x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Double Factorial
المؤلف: Arfken, G
المصدر: Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
الجزء والصفحة: ...
15-5-2019
3386
The double factorial of a positive integer is a generalization of the usual factorial defined by
(1) |
Note that , by definition (Arfken 1985, p. 547).
The origin of the notation appears not to not be widely known and is not mentioned in Cajori (1993).
For , 1, 2, ..., the first few values are 1, 1, 2, 3, 8, 15, 48, 105, 384, ... (OEIS A006882). The numbers of decimal digits in for , 1, ... are 1, 4, 80, 1285, 17831, 228289, 2782857, 32828532, ... (OEIS A114488).
The double factorial is implemented in the Wolfram Language as n!! or Factorial2[n].
The double factorial is a special case of the multifactorial.
The double factorial can be expressed in terms of the gamma function by
(2) |
(Arfken 1985, p. 548).
The double factorial can also be extended to negative odd integers using the definition
(3) |
|||
(4) |
for , 1, ... (Arfken 1985, p. 547).
Similarly, the double factorial can be extended to complex arguments as
(5) |
There are many identities relating double factorials to factorials. Since
(6) |
it follows that . For , 1, ..., the first few values are 1, 3, 15, 105, 945, 10395, ... (OEIS A001147).
Also, since
(7) |
|||
(8) |
|||
(9) |
it follows that . For , 1, ..., the first few values are 1, 2, 8, 48, 384, 3840, 46080, ... (OEIS A000165).
Finally, since
(10) |
it follows that
(11) |
For odd,
(12) |
|||
(13) |
|||
(14) |
For even,
(15) |
|||
(16) |
|||
(17) |
Therefore, for any ,
(18) |
(19) |
The double factorial satisfies the beautiful series
(20) |
|||
(21) |
|||
(22) |
The latter gives rhe sum of reciprocal double factorials in closed form as
(23) |
|||
(24) |
|||
(25) |
(OEIS A143280), where is a lower incomplete gamma function. This sum is a special case of the reciprocal multifactorial constant.
A closed-form sum due to Ramanujan is given by
(26) |
(Hardy 1999, p. 106). Whipple (1926) gives a generalization of this sum (Hardy 1999, pp. 111-112).
REFERENCES:
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 544-545 and 547-548, 1985.
Cajori, F. A History of Mathematical Notations, Vol. 2. New York: Dover, 1993.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Meserve, B. E. "Double Factorials." Amer. Math. Monthly 55, 425-426, 1948.
Sloane, N. J. A. Sequences A000165/M1878, A001147/M3002, A006882/M0876, A114488, and A143280 in "The On-Line Encyclopedia of Integer Sequences."
Whipple, F. J. W. "On Well-Poised Series, Generalised Hypergeometric Series Having Parameters in Pairs, Each Pair with the Same Sum." Proc. London Math. Soc. 24, 247-263, 1926.