1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

nverse Sine

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

12-10-2019

3194

Inverse Sine

ArcSin

ArcSinReImAbs
 
 
  Min   Max    
  Re    
  Im      

The inverse sine is the multivalued function sin^(-1)z (Zwillinger 1995, p. 465), also denoted arcsinz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; Jeffrey 2000, p. 124), that is the inverse function of the sine. The variants Arcsinz (e.g., Bronshtein and Semendyayev, 1997, p. 69) and Sin^(-1)z are sometimes used to refer to explicit principal values of the inverse sine, although this distinction is not always made (e.g,. Zwillinger 1995, p. 466). Worse yet, the notation arcsinz is sometimes used for the principal value, with Arcsinz being used for the multivalued function (Abramowitz and Stegun 1972, p. 80). Note that in the notation sin^(-1)z (commonly used in North America and in pocket calculators worldwide), sinz is the sine and the superscript -1 denotes the inverse function, not the multiplicative inverse.

The principal value of the inverse sine is implemented as ArcSin[z] in the Wolfram Language. In the GNU C library, it is implemented as asin(double x).

InverseSineBranchCut

The inverse sine is a multivalued function and hence requires a branch cut in the complex plane, which the Wolfram Language's convention places at (-infty,-1) and (1,infty). This follows from the definition of sin^(-1)z as

 sin^(-1)z=-iln(iz+sqrt(1-z^2)).

(1)

Special values include

sin^(-1)(-1) = -1/2pi

(2)

sin^(-1)0 = 0

(3)

sin^(-1)1 = 1/2pi.

(4)

The derivative of sin^(-1)z is

 d/(dz)sin^(-1)z=1/(sqrt(1-z^2))

(5)

and its indefinite integral is

 intsin^(-1)zdz=sqrt(1-z^2)+zsin^(-1)z+C.

(6)

The inverse sine satisfies

 sin^(-1)z=csc^(-1)(1/z)

(7)

for z!=0,

sin^(-1)z = -sin^(-1)(-z)

(8)

= cos^(-1)(-z)-1/2pi

(9)

= 1/2pi-cos^(-1)z

(10)

for all complex z,

sin^(-1)x = <span style={-1/2pi+sin^(-1)(sqrt(1-x^2)) for x<0; 1/2pi-sin^(-1)(sqrt(1-x^2)) for x>0" src="http://mathworld.wolfram.com/images/equations/InverseSine/Inline36.gif" style="height:76px; width:209px" />

(11)

= <span style={-1/2pi-cot^(-1)(x/(sqrt(1-x^2))) for x<0; 1/2pi-cot^(-1)(x/(sqrt(1-x^2))) for x>0" src="http://mathworld.wolfram.com/images/equations/InverseSine/Inline39.gif" style="height:120px; width:214px" />

(12)

= <span style={-cos^(-1)(sqrt(1-x^2)) for -1<x<0; cos^(-1)(sqrt(1-x^2)) for 0<x<1" src="http://mathworld.wolfram.com/images/equations/InverseSine/Inline42.gif" style="height:76px; width:209px" />

(13)

= <span style={-sec^(-1)(1/(sqrt(1-x^2))) for -1<x<0; sec^(-1)(1/(sqrt(1-x^2))) for 0<x<1," src="http://mathworld.wolfram.com/images/equations/InverseSine/Inline45.gif" style="height:120px; width:213px" />

(14)

and

sin^(-1)x = tan^(-1)(x/(sqrt(1-x^2)))

(15)

= cot^(-1)((sqrt(1-x^2))/x)

(16)

for -1<x<1, where equality at points where the denominators are 0 is understood to mean in the limit as x->+/-1 or x->0, respectively.

The Maclaurin series for the inverse sine with -1<=x<=1 is given by

sin^(-1)x = sum_(n=0)^(infty)((1/2)_n)/((2n+1)n!)x^(2n+1)

(17)

= x+1/6x^3+3/(40)x^5+5/(112)x^7+(35)/(1152)x^9+...

(18)

(OEIS A055786 and A002595), where (x)_n is a Pochhammer symbol.

The inverse sine can be given by the sum

 (sin^(-1)x)^2=1/2sum_(n=1)^infty((2x)^(2n))/(n^2(2n; n)),

(19)

where (2n; n) is a binomial coefficient (Borwein et al. 2004, p. 51; Borwein and Chamberland 2005; Bailey et al. 2007, pp. 15-16). Similarly,

[sin^(-1)(1/2x)]^4 = 3/2sum_(k=1)^(infty)[sum_(m=1)^(k-1)1/(m^2)](x^(2k))/(k^2(2k; k))

(20)

[sin^(-1)(1/2x)]^6 = (45)/4sum_(k=1)^(infty)[sum_(m=1)^(k-1)1/(m^2)sum_(n=1)^(m-1)1/(n^2)](x^(2k))/(k^2(2k; k))

(21)

[sin^(-1)(1/2x)]^8 = (315)/2sum_(k=1)^(infty)[sum_(m=1)^(k-1)1/(m^2)sum_(n=1)^(m-1)1/(n^2)sum_(p=1)^(n-1)1/(p^2)](x^(2k))/(k^2(2k; k))

(22)

(Bailey et al. 2007, pp. 16 and 282; Borwein and Chamberland 2007). Ramanujan gave the cases (sin^(-1)x)^n for n=1, 2, 3, and 4 (Berndt 1985, pp. 262-263), and the general cases are given in terms of multiple sums by Bailey et al. (2006, pp. 15-16 and 282) and Borwein and Chamberland (2007).

The inverse sine has continued fraction

 sin^(-1)z=(zsqrt(1-z^2))/(1-(1·2z^2)/(3-(1·2z^2)/(5-(3·4z^2)/(7-(3·4z^2)/(9-(5·6z^2)/(11-...))))))

(23)

(Wall 1948, p. 345).



REFERENCES:

Abramowitz, M. and Stegun, I. A.(Eds.). "Inverse Circular Functions." §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.

Apostol, T. M. Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltham, MA: Blaisdell, pp. 253-254, 1967.

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, 1985.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143 and 220, 1987.

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Borwein, J. M. and Chamberland, M. "Integer Powers of Arcsin." Int. J. Math. Math. Sci., Art. 19381, 1-10, 2007.

Bronshtein, I. N. and Semendyayev, K. A. Handbook of Mathematics, 3rd ed. New York: Springer-Verlag, pp. 69-70, 1997.

GNU C Library. "Mathematics: Inverse Trigonometric Functions." http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_19.html#SEC389.

Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in Handbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 124-128, 2000.

Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 307, 1998.

Sloane, N. J. A. Sequences A002595/M4233 and A055786 in "The On-Line Encyclopedia of Integer Sequences."

Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.

Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.

Zwillinger, D.(Ed.). "Inverse Circular Functions." §6.3 in CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 465-467, 1995.

EN

تصفح الموقع بالشكل العمودي