1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Infinite Product

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

13-11-2019

2956

Infinite Product

 

A product involving an infinite number of terms. Such products can converge. In fact, for positive a_n, the product product_(n=1)^(infty)a_n converges to a nonzero number iff sum_(n=1)^(infty)lna_n converges.

 

Infinite products can be used to define the cosine

(1)

gamma function

(2)

sine, and sinc function. They also appear in polygon circumscribing,

(3)

An interesting infinite product formula due to Euler which relates pi and the nth prime p_n is

pi =

(4)

=

(5)

(Blatner 1997). Knar's formula gives a functional equation for the gamma function Gamma(x) in terms of the infinite product

(6)

A regularized product identity is given by

(7)

(Muñoz Garcia and Pérez-Marco 2003, 2008).

Mellin's formula states

(8)

where psi_0(x) is the digamma function and Gamma(x) is the gamma function.

The following class of products

product_(n=2)^(infty)(n^2-1)/(n^2+1) = picschpi

(9)

product_(n=2)^(infty)(n^3-1)/(n^3+1) = 2/3

(10)

product_(n=2)^(infty)(n^4-1)/(n^4+1) = -1/2pisinhpicsc[(-1)^(1/4)pi]csc[(-1)^(3/4)pi]

(11)

= (pisinh(pi))/(cosh(sqrt(2)pi)-cos(sqrt(2)pi))

(12)

product_(n=2)^(infty)(n^5-1)/(n^5+1) = (2Gamma(-(-1)^(1/5))Gamma((-1)^(2/5))Gamma(-(-1)^(3/5))Gamma((-1)^(4/5)))/(5Gamma((-1)^(1/5))Gamma(-(-1)^(2/5))Gamma((-1)^(3/5))Gamma(-(-1)^(4/5)))

(13)

(Borwein et al. 2004, pp. 4-6), where Gamma(z) is the gamma function, the first of which is given in Borwein and Corless (1999), can be done analytically. In particular, for r>1,

(14)

where omega_k=e^(ipi/k) (Borwein et al. 2004, pp. 6-7). It is not known if (13) is algebraic, although it is known to satisfy no integer polynomial with degree less than 21 and Euclidean norm less than 5×10^(18) (Borwein et al. 2004, p. 7).

Products of the following form can be done analytically,

(15)

where x_iy_i, and z_i are the roots of

x^3-5x^2+10x-10 = 0

(16)

y^4-6y^3+15y^2-20y+15 = 0

(17)

z^4-5z^3+10z^2-10z+5 =

(18)

respectively, can also be done analytically. Note that (17) and (18) were unknown to Borwein and Corless (1999). These are special cases of the result that

(19)

if a_0=b_0=1 and a_1=b_1, where r_i is the ith root of  and s_i is the ith root of  (P. Abbott, pers. comm., Mar. 30, 2006).

For k>=2,

(20)

(D. W. Cantrell, pers. comm., Apr. 18, 2006). The first few explicit cases are

product_(n=2)^(infty)(1-1/(n^2)) = 1/2

(21)

product_(n=2)^(infty)(1-1/(n^3)) = (cosh(1/2pisqrt(3)))/(3pi)

(22)

= 1/(3Gamma((-1)^(1/3))Gamma(-(-1)^(2/3)))

(23)

product_(n=2)^(infty)(1-1/(n^4)) = (sinhpi)/(4pi)

(24)

product_(n=2)^(infty)(1-1/(n^5)) = 1/(5Gamma((-1)^(1/5))Gamma(-(-1)^(2/5))Gamma((-1)^(3/5))Gamma(-(-1)^(4/5)))

(25)

product_(n=2)^(infty)(1-1/(n^6)) = (1+cosh(pisqrt(3)))/(12pi^2).

(26)

These are a special case of the general formula

 product_(k=1)^infty(1-(x^n)/(k^n))=-1/(x^n)product_(k=0)^(n-1)1/(Gamma(-e^(2piik/n)x))

(27)

(Prudnikov et al. 1986, p. 754).

Similarly, for k>=2,

(28)

(D. W. Cantrell, pers. comm., Mar. 29, 2006). The first few explicit cases are

product_(n=1)^(infty)(1+1/(n^2)) = (sinhpi)/pi

(29)

product_(n=1)^(infty)(1+1/(n^3)) = 1/picosh(1/2pisqrt(3))

(30)

product_(n=1)^(infty)(1+1/(n^4)) = (cosh(pisqrt(2))-cos(pisqrt(2)))/(2pi^2)

(31)

= -(sin[(-1)^(1/4)pi]sin[(-1)^(3/4)pi])/(pi^2)

(32)

product_(n=1)^(infty)(1+1/(n^5)) = |Gamma[exp(2/5pii)]Gamma[exp(6/5pii)]|^(-2)

(33)

product_(n=1)^(infty)(1+1/(n^6)) = (sinhpi[coshpi-cos(sqrt(3)pi)])/(2pi^3).

(34)

The d-analog expression

 [infty!]_d=product_(n=3)^infty(1-(2^d)/(n^d))

(35)

also has closed form expressions,

product_(n=3)^(infty)(1-4/(n^2)) = 1/6

(36)

product_(n=3)^(infty)(1-8/(n^3)) = (sinh(pisqrt(3)))/(42pisqrt(3))

(37)

product_(n=3)^(infty)(1-(16)/(n^4)) = (sinh(2pi))/(120pi)

(38)

product_(n=3)^(infty)(1-(32)/(n^5)) = |Gamma[exp(1/5pii)]Gamma[2exp(7/5pii)]|^(-2).

(39)

General expressions for infinite products of this type include

product_(n=1)^(infty)[1-(z/n)^(2N)] = (sin(piz))/(piz^(2N-1))product_(k=1)^(N-1)|Gamma(ze^(2pii(k-N)/(2N)))|^(-2)

(40)

product_(n=1)^(infty)[1+(z/n)^(2N)] = 1/(z^(2N))product_(k=1)^(N)|Gamma(ze^(pii[2(k-N)-1]/(2N)))|^(-2)

(41)

product_(n=1)^(infty)[1-(z/n)^(2N+1)] = 1/(Gamma(1-z)z^(2N))product_(k=1)^(N)|Gamma(ze^(pii[2(k-N)-1]/(2N+1)))|^(-2)

(42)

product_(n=1)^(infty)[1+(z/n)^(2N+1)] = 1/(Gamma(1+z)z^(2N))product_(k=1)^(N)|Gamma(ze^(2pii(k-N-1)/(2N+1)))|^(-2),

(43)

where Gamma(z) is the gamma function and |z| denotes the complex modulus (Kahovec). (40) and (41) can also be rewritten as

product_(n=1)^(infty)[1-(z/n)^(2N)] =

(44)

product_(n=1)^(infty)[1+(z/n)^(2N)] =

(45)

where |_x_| is the floor function, [x] is the ceiling function, and mod(a,m) is the modulus of a (mod m) (Kahovec).

Infinite products of the form

product_(k=1)^(infty)(1-1/(n^k)) = (n^(-1))_infty

(46)

=

(47)

converge for n>1, where (q)_infty is a q-Pochhammer symbol and theta_n(z,q) is a Jacobi theta function. Here, the n=2 case is exactly the constant Q encountered in the analysis of digital tree searching.

Other products include

product_(k=1)^(infty)(1+2/k)^((-1)^(k+1)k) = pi/(2e)    

(48)

= 0.57786367...    

(49)

product_(k=0)^(infty)(1+e^(-(2k+1)pi)) = 2^(1/4)e^(-pi/24)    

(50)

product_(k=3)^(infty)(1-(pi^2)/(2k^2))sec(pi/k) = 0.86885742...

(51)

(OEIS A086056 and A247559; Prudnikov et al. 1986, p. 757). Note that Prudnikov et al. (1986, p. 757) also incorrectly give the product

(52)

where (q)_infty is a q-Pochhammer symbol, as , which differs from the correct result by 1.8×10^(-5).

The following analogous classes of products can also be done analytically (J. Zúñiga, pers. comm., Nov. 9, 2004), where again theta_n(z,q) is a Jacobi theta function,

product_(k=1)^(infty)(1+1/(n^k)) =

(53)

product_(k=1)^(infty)((1-n^(-k))/(1+n^(-k))) =

(54)

= theta_4(0,n^(-1))

(55)

product_(k=1)^(infty)((1-n^(-2k))/(1+n^(-2k)))^2 = product_(k=1)^(infty)tanh^2(klnn)

(56)

=

(57)

product_(k=1)^(infty)((1-n^(-2k+1))/(1+n^(-2k+1)))^2 = product_(k=1)^(infty)tanh^2[(k-1/2)lnn]

(58)

=

(59)

product_(k=1)^(infty)(1-1/(n^(2k-1))) =

(60)

product_(k=1)^(infty)(1+1/(n^(2k-1))) =

(61)

product_(k=1)^(infty)[1+(-1)^(k-1)b/(k+a)] = 2^b_2F_1(a+b,b;a+1;-1)

(62)

= (sqrt(pi)Gamma(a+1))/(2^aGamma(1/2(2+b-a))Gamma(1/2(1+b+a))).

(63)

The first of these can be used to express the Fibonacci factorial constant in closed form.

A class of infinite products derived from the Barnes G-function is given by

(64)

where gamma is the Euler-Mascheroni constant. For z=1, 2, 3, and 4, the explicit products are given by

product_(n=1)^(infty)(1+1/n)^ne^(1/(2n)-1) = (e^(1+gamma/2))/(sqrt(2pi))

(65)

product_(n=1)^(infty)(1+2/n)^ne^(4/(2n)-2) = (e^(3+2gamma))/(2pi)

(66)

product_(n=1)^(infty)(1+3/n)^ne^(9/(2n)-3) = (e^(6+9gamma/2))/(sqrt(2)pi^(3/2))

(67)

product_(n=1)^(infty)(1+4/n)^ne^(16/(2n)-4) = (3e^(10+8gamma))/(pi^2).

(68)

The interesting identities

(69)

(Ewell 1995, 2000), where b(n) is the exponent of the exact power of 2 dividing n is the odd part of nsigma_k(n) is the divisor function of n, and

product_(n=1)^(infty)(1+x^(2n-1))^8 = product_(n=1)^(infty)(1-x^(2n-1))^8+16xproduct_(n=1)^(infty)(1+x^(2n))^8

(70)

=

(71)

(OEIS A101127; Jacobi 1829; Ford et al. 1994; Ewell 1998, 2000), the latter of which is known as "aequatio identica satis abstrusa" in the string theory physics literature, arise is connection with the tau function.

An unexpected infinite product involving tanx is given by

(72)

(Dobinski 1876, Agnew and Walker 1947).

A curious identity first noted by Gosper is given by

product_(n=1)^(infty)1/e(1/(3n)+1)^(3n+1/2) =

(73)

= 1.012378552722912...

(74)

(OEIS A100072), where Gamma(z) is the gamma function, psi_1(z) is the trigamma function, and A is the Glaisher-Kinkelin constant.


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 75, 1972.

Agnew, R. P. and Walker, R. J. "A Trigonometric Infinite Product." Amer. Math. Monthly 54, 206-211, 1947.

Arfken, G. "Infinite Products." §5.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 346-351, 1985.

Blatner, D. The Joy of Pi. New York: Walker, p. 119, 1997.

Borwein, J.; Bailey, D.; and Girgensohn, R. "Two Products." §1.2 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 4-7, 2004.

Borwein, J. M. and Corless, R. M. "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly 106, 899-909, 1999.

Dobinski, G. "Product einer unendlichen Factorenreihe." Archiv Math. u. Phys. 59, 98-100, 1876.

Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 1. New York: Krieger, p. 6, 1981.

Ewell, J. A. "Arithmetical Consequences of a Sextuple Product Identity." Rocky Mtn. J. Math. 25, 1287-1293, 1995.

Ewell, J. A. "A Note on a Jacobian Identity." Proc. Amer. Math. Soc. 126, 421-423, 1998.

Ewell, J. A. "New Representations of Ramanujan's Tau Function." Proc. Amer. Math. Soc. 128, 723-726, 2000.

Finch, S. R. "Kepler-Bouwkamp Constant." §6.3 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 428-429, 2003.

Ford, D.; McKay, J.; and Norton, S. P. "More on Replicable Functions." Commun. Alg. 22, 5175-5193, 1994.

Hansen, E. R. A Table of Series and Products. Englewood Cliffs, NJ: Prentice-Hall, 1975.

Jacobi, C. G. J. "E formulis (7.),(8.) sequitur aequatio identica satis abstrusa: (14.) ." Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Germany: Regiomonti, Sumtibus fratrum Borntraeger, 1829. Reprinted in Gesammelte Werke, Band. 1. Providence, RI: Amer. Math. Soc., p. 147, 1969.

Jeffreys, H. and Jeffreys, B. S. "Infinite Products." §1.14 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 52-53, 1988.

Krantz, S. G. "The Concept of an Infinite Product." §8.1.6 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 104-105, 1999.

Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is 4pi^2." Preprint IHES/M/03/34. May 2003. http://inc.web.ihes.fr/prepub/PREPRINTS/M03/Resu/resu-M03-34.html.

Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is 4pi^2." Commun. Math. Phys. 277, 69-81, 2008.

Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. "Infinite Products." §6.2 in Integrals and Series, Vol. 1: Elementary Functions. New York: Gordon & Breach, pp. 753-757, 1986.

Ritt, J. F. "Representation of Analytic Functions as Infinite Products." Math. Z. 32, 1-3, 1930.

Sloane, N. J. A. Sequences A048651, A086056, A100072, A100220, A100221, A100222, A101127, and A247559 in "The On-Line Encyclopedia of Integer Sequences."

Whittaker, E. T. and Watson, G. N. §7.5-7.6 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

EN

تصفح الموقع بالشكل العمودي