تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Multiplicative Order
المؤلف:
Burton, D. M.
المصدر:
"The Order of an Integer Modulo n." §8.1 in Elementary Number Theory, 4th ed. Dubuque, IA: William C. Brown Publishers
الجزء والصفحة:
...
12-1-2020
1769
Let be a positive number having primitive roots. If
is a primitive root of
, then the numbers 1,
,
, ...,
form a reduced residue system modulo
, where
is the totient function. In this set, there are
primitive roots, and these are the numbers
, where
is relatively prime to
.
The smallest exponent for which
, where
and
are given numbers, is called the multiplicative order (or sometimes haupt-exponent or modulo order) of
(mod
).
The multiplicative order is implemented in the Wolfram Language as MultiplicativeOrder[g, n].
The number of bases having multiplicative order is
, where
is the totient function. Cunningham (1922) published the multiplicative order for primes to 25409 and bases 2, 3, 5, 6, 7, 10, 11, and 12.
Multiplicative orders exist for that are relatively prime to
. For example, the multiplicative order of 10 (mod 7) is 6, since
![]() |
(1) |
The multiplicative order of 10 mod an integer relatively prime to 10 gives the period of the decimal expansion of the reciprocal of
(Glaisher 1878, Lehmer 1941). For example, the haupt-exponent of 10 (mod 13) is 6, and
![]() |
(2) |
which has period 6.
The following table gives the first few multiplicative orders for bases (mod
), where
is the series of numbers relatively prime to
.
![]() |
OEIS | haupt-exponents |
2 | A002326 | 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, ... |
3 | A050975 | 1, 2, 4, 6, 2, 4, 5, 3, 6, 4, 16, 18, 4, 5, ... |
4 | A050976 | 1, 2, 3, 3, 5, 6, 2, 4, 9, 3, 11, 10, 9, 14, ... |
5 | A050977 | 1, 2, 1, 2, 6, 2, 6, 5, 2, 4, 6, 4, 16, 6, 9, ... |
6 | A050978 | 1, 2, 10, 12, 16, 9, 11, 5, 14, ... |
7 | A050979 | 1, 1, 2, 4, 1, 2, 3, 4, 10, 2, 12, 4, 2, 16, ... |
8 | A050980 | 2, 4, 1, 2, 10, 4, 4, 8, 6, 2, 11, 20, 6, 28, ... |
9 | A050981 | 1, 1, 2, 3, 1, 2, 5, 3, 3, 2, 8, 9, 2, 5, 11, ... |
10 | A002329 | 1, 6, 1, 2, 6, 16, 18, 6, 22, 3, 28, ... |
If is an arbitrary integer relatively prime to
, then there exists among the numbers 0, 1, 2, ...,
exactly one number
such that
![]() |
(3) |
The number is then called the generalized multiplicative order (or discrete logarithm; Schneier 1996, p. 501) of
with respect to the base
modulo
. Note that Nagell (1951, p. 112) instead uses the term "index" and writes
![]() |
(4) |
For example, the number 7 is the least positive primitive root of , and since
, the number 15 has multiplicative order 3 with respect to base 7 (modulo 41) (Nagell 1951, p. 112).
The generalized multiplicative order is implemented in the Wolfram Language as MultiplicativeOrder[g, n, {" src="http://mathworld.wolfram.com/images/equations/MultiplicativeOrder/Inline41.gif" style="height:15px; width:5px" />a1
}" src="http://mathworld.wolfram.com/images/equations/MultiplicativeOrder/Inline42.gif" style="height:15px; width:5px" />], or more generally as MultiplicativeOrder[g, n,
{" src="http://mathworld.wolfram.com/images/equations/MultiplicativeOrder/Inline43.gif" style="height:15px; width:5px" />a1, a2, ...
}" src="http://mathworld.wolfram.com/images/equations/MultiplicativeOrder/Inline44.gif" style="height:15px; width:5px" />].
If the primitive roots and
are chosen, the resulting function is called the suborder function and is denoted
. If the single primitive root
is chosen, then the function reduces to "the" (i.e., ungeneralized) multiplicative order, denoted
, implemented in the Wolfram Language as MultiplicativeOrder[a, n]. This function is sometimes also known as the discrete logarithm (or, more confusingly, as the "index," a term that Nagell applied to the case of general
).
REFERENCES:
Burton, D. M. "The Order of an Integer Modulo ." §8.1 in Elementary Number Theory, 4th ed. Dubuque, IA: William C. Brown Publishers, pp. 184-190, 1989.
Cunningham, A. Haupt-Exponents, Residue Indices, Primitive Roots. London: F. Hodgson, 1922.
Glaisher, J. W. L. "Periods of Reciprocals of Integers Prime to 10." Proc. Cambridge Philos. Soc. 3, 185-206, 1878.
Lehmer, D. H. "Guide to Tables in the Theory of Numbers." Bulletin No. 105. Washington, DC: National Research Council, pp. 7-12, 1941.
Nagell, T. "Exponent of an Integer Modulo " and "The Index Calculus." §31 and 33 in Introduction to Number Theory. New York: Wiley, pp. 102-106 and 111-115, 1951.
Odlyzko, A. "Discrete Logarithms: The Past and the Future." http://www.dtc.umn.edu/~odlyzko/doc/discrete.logs.future.pdf.
Schneier, B Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed. New York: Wiley, 1996.
Sloane, N. J. A. Sequences A002326/M0936, A002329/M4045, A050975, A050976, A050977, A050978, A050979, A050980, and A050981 in "The On-Line Encyclopedia of Integer Sequences."