1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Polygon Inscribing

المؤلف:  Johnson, R. A.

المصدر:  Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.

الجزء والصفحة:  ...

12-2-2020

870

Polygon Inscribing

Let a convex polygon be inscribed in a circle and divided into triangles from diagonals from one polygon vertex. The sum of the radii of the circles inscribed in these triangles is the same independent of the polygon vertex chosen (Johnson 1929, p. 193).

If a triangle is inscribed in a circle, another circle inside the triangle, a square inside the circle, another circle inside the square, and so on. Then the equation relating the inradius and circumradius of a regular polygon,

 r=Rcos(pi/n)

(1)

gives the ratio of the radii of the final to initial circles as

(2)

Numerically,

(3)

(OEIS A085365), where K is the corresponding constant for polygon circumscribing. This constant is termed the Kepler-Bouwkamp constant by Finch (2003). Kasner and Newman's (1989) assertion that K=1/12 is incorrect, as is the value of 0.8700... given by Prudnikov et al. (1986, p. 757).


REFERENCES:

Finch, S. R. "Kepler-Bouwkamp Constant." §6.3 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 428-429, 2003.

Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.

Kasner, E. and Newman, J. R. Mathematics and the Imagination. Redmond, WA: Microsoft Press, pp. 311-312, 1989.

Pappas, T. "Infinity & Limits." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 180, 1989.

Plouffe, S. "Product(cos(Pi/n),n=3..infinity)." http://pi.lacim.uqam.ca/piDATA/productcos.txt.

Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. Integrals and Series, Vol. 1: Elementary Functions. New York: Gordon & Breach, 1986.

Sloane, N. J. A. Sequence A085365 in "The On-Line Encyclopedia of Integer Sequences."

EN