تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Triangle Triangle Picking
المؤلف:
Sloane, N. J. A.
المصدر:
Sequences A103474, A103475, A130117, and A130118 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
14-2-2020
890
The problem of finding the mean triangle area of a triangle with vertices picked inside a triangle with unit area was proposed by Watson (1865) and solved by Sylvester. It solution is a special case of the general formula for polygon triangle picking.
Since the problem is affine, it can be solved by considering for simplicity an isosceles right triangle with unit leg lengths. Integrating the formula for the area of a triangle over the six coordinates of the vertices (and normalizing to the area of the triangle and region of integration by dividing by the integral of unity over the region) gives
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where
![]() |
(3) |
is the triangle area of a triangle with vertices ,
, and
.
The integral can be solved using computer algebra by breaking up the integration region using cylindrical algebraic decomposition. This results in 62 regions, 30 of which have distinct integrals, each of which can be directly integrated. Combining the results then gives the result
![]() |
(4) |
(Pfiefer 1989; Zinani 2003).
The exact distribution function was derived by Philip.
and
are given by
![]() |
(5) |
where the subscript 1 denotes the region with and 2 denotes the region with
.
The raw moments of
for
, 2, ... are 1/12, 1/144, 31/9000, 1/450, 1063/617400, 403/264600, ... (OEIS A103474 and A103475).
The central moments of
for
, 2, ... are 0, 1/144, 61/54000, 343/864000, 9493/66679200, ...
(OEIS A130117 and A130118).
REFERENCES:
Pfiefer, R. E. "The Historical Development of J. J. Sylvester's Four Point Problem." Math. Mag. 62, 309-317, 1989.
Philip, J. "The Area of a Random Convex Polygon in a Triangle." Tech. Report TRITA MAT 05 MA 04. n.d. http://www.math.kth.se/~johanph/area2.pdf.
Sloane, N. J. A. Sequences A103474, A103475, A130117, and A130118 in "The On-Line Encyclopedia of Integer Sequences."
Watson, S. "Question 1229." Mathematical Questions, with Their Solutions, from the Educational Times, Vol. 4. London: F. Hodgson and Son, p. 101, 1865.
Zinani, A. "The Expected Volume of a Tetrahedron Whose Vertices are Chosen at Random in the Interior of a Cube." Monatshefte Math. 139, 341-348, 2003.