1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Golden Ratio Digits

المؤلف:  Sloane, N. J. A.

المصدر:  Sequences A/M4046, A064119, A088577, and A224844 in "The On-Line Encyclopedia of Integer Sequences."

الجزء والصفحة:  ...

17-2-2020

926

Golden Ratio Digits

 

The golden ratio has decimal expansion

 phi=1.618033988749894848...

(OEIS A001622). It can be computed to 10^(10) digits of precision in 24 CPU-minutes on modern hardware and was computed to 10^(12) decimal digits by A. J. Yee on Jul. 8, 2010.

The Earls sequence (starting position of n copies of the digit n) for phi is given for n=1, 2, ... by 2, 62, 158, 1216, 72618, 2905357, 7446157, 41398949, 1574998166, ... (OEIS A224844).

The digit sequence 0123456789 does not occur in the first 10^(10) digits of phi, but 9876543210 does, starting at position 898007781 (E. Weisstein, Jul. 22, 2013).

Phi-primes, i.e., phi-constant primes occur for 7, 13, 255, 280, 97241, ... (OEIS A064119) decimal digits.

The starting positions of the first occurrence of n=0, 1, 2, ... in the decimal expansion of phi (including the initial 1 and counting it as the first digit) are 5, 1, 20, 6, 12, 23, 2, 11, 4, 8, 232, ... (OEIS A088577).

Scanning the decimal expansion of phi until all n-digit numbers have occurred, the last 1-, 2-, ... digit numbers appearing are 5, 55, 515, 0092, 67799, 290503, ... (OEIS A000000), which end at digits 23, 770, 5819, 93910, 1154766, 13192647, ... (OEIS A000000).

It is not known if phi is normal, but the following table giving the counts of digits in the first 10^n terms shows that the decimal digits are very uniformly distributed up to at least 10^9.

d
OEIS 10 100 10^3 10^4 10^5 10^6 10^7 10^8 10^9 10^(10)
0 A000000 1 11 100 1020 9986 99805 1001143 10003332 100007840 1000031042
1 A000000 1 9 105 1062 9963 99993 1000118 10000255 99999864 999990982
2 A000000 0 11 116 994 9950 99529 1000776 10002116 100002106 1000005392
3 A000000 2 9 88 1039 10079 99833 999794 9999184 99979352 999978183
4 A000000 0 12 92 976 10041 100151 999367 9998797 99995481 999952470
5 A000000 0 5 84 988 10016 100067 999725 9996151 99999934 1000032985
6 A000000 1 9 104 918 9975 100328 999455 9996149 100004208 1000014191
7 A000000 1 10 113 1025 9988 100160 1000852 9997524 100018237 1000023870
8 A000000 3 15 105 987 10008 100236 1000059 10005419 99995223 999976728
9 A000000 1 9 93 991 9994 99898 998711 10001073 99997755 999994157

REFERENCES:

Sloane, N. J. A. Sequences A/M4046, A064119, A088577, and A224844 in "The On-Line Encyclopedia of Integer Sequences."

Yee, A. J. "y-cruncher - A Multi-Threaded Pi-Program." http://www.numberworld.org/y-cruncher/.

EN

تصفح الموقع بالشكل العمودي