1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Multigrade Equation

المؤلف:  Chernick, J.

المصدر:  "Ideal Solutions of the Tarry-Escott Problem." Amer. Math. Monthly 44

الجزء والصفحة:  ...

3-6-2020

1223

Multigrade Equation

(k,l)-multigrade equation is a Diophantine equation of the form

 sum_(i=1)^ln_i^j=sum_(i=1)^lm_i^j

(1)

for j=1, ..., k, where m and n are l-vectors. Multigrade identities remain valid if a constant is added to each element of m and n (Madachy 1979), so multigrades can always be put in a form where the minimum component of one of the vectors is 1.

Moessner and Gloden (1944) give a bevy of multigrade equations. Small-order examples are the (2, 3)-multigrade with m=<span style={1,6,8}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline9.gif" style="height:15px; width:76px" /> and n=<span style={2,4,9}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline10.gif" style="height:15px; width:72px" />:

sum_(i=1)^(3)m_i^1 = sum_(i=1)^(3)n_i^1=15

(2)

sum_(i=1)^(3)m_i^2 = sum_(i=1)^(3)n_i^2=101,

(3)

the (3, 4)-multigrade with m=<span style={1,5,8,12}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline17.gif" style="height:15px; width:98px" /> and n=<span style={2,3,10,11}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline18.gif" style="height:15px; width:101px" />:

sum_(i=1)^(4)m_i^1 = sum_(i=1)^(4)n_i^1=26

(4)

sum_(i=1)^(4)m_i^2 = sum_(i=1)^(4)n_i^2=234

(5)

sum_(i=1)^(4)m_i^3 = sum_(i=1)^(4)n_i^3=2366,

(6)

and the (4, 6)-multigrade with m=<span style={1,5,8,12,18,19}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline28.gif" style="height:15px; width:142px" /> and n=<span style={2,3,9,13,16,20}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline29.gif" style="height:15px; width:138px" />:

sum_(i=1)^(6)m_i^1 = sum_(i=1)^(6)n_i^1=63

(7)

sum_(i=1)^(6)m_i^2 = sum_(i=1)^(6)n_i^2=919

(8)

sum_(i=1)^(6)m_i^3 = sum_(i=1)^(6)n_i^3=15057

(9)

sum_(i=1)^(6)m_i^4 = sum_(i=1)^(6)n_i^4=260755

(10)

(Madachy 1979).

A spectacular example with k=9 and l=10 is given by n=<span style={+/-12,+/-11881,+/-20231,+/-20885,+/-23738}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline44.gif" style="height:15px; width:279px" /> and m=<span style={+/-436,+/-11857,+/-20449,+/-20667,+/-23750}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline45.gif" style="height:15px; width:290px" /> (Guy 1994), which has sums

sum_(i=1)^(9)m_i^1 = sum_(i=1)^(9)n_i^1=0

(11)

sum_(i=1)^(9)m_i^2 = sum_(i=1)^(9)n_i^2=3100255070

(12)

sum_(i=1)^(9)m_i^3 = sum_(i=1)^(9)n_i^3=0

(13)

sum_(i=1)^(9)m_i^4 = sum_(i=1)^(9)n_i^4=1390452894778220678

(14)

sum_(i=1)^(9)m_i^5 = sum_(i=1)^(9)n_i^5=0

(15)

sum_(i=1)^(9)m_i^6 = sum_(i=1)^(9)n_i^6=666573454337853049941719510

(16)

sum_(i=1)^(9)m_i^7 = sum_(i=1)^(9)n_i^7=0

(17)

sum_(i=1)^(9)m_i^8 = sum_(i=1)^(9)n_i^8=330958142560259813821203262692838598

(18)

sum_(i=1)^(9)m_i^9 = sum_(i=1)^(9)n_i^9=0.

(19)

Rivera considers multigrade equations involving primes, consecutive primes, etc.

Analogous multigrade identities to Ramanujan's fourth power identity of form

 a_1^4+a_2^4+a_3^4=2a_4^m

(20)

can also be given for third and fifth powers, the former being

 (a^2+ab)^r+(a^2-ab)^r+(b^2+ab)^r+(b^2-ab)^r=2(p^2+q^2)^(kr)

(21)

with r=1, 2, 3, for any positive integer k, and where

a = 1/2[(p-qi)^k+(p+qi)^k]

(22)

b = 1/2i[(p-qi)^k-(p+qi)^k]

(23)

and the one for fifth powers

 [(a+c)^n+(b+c)^n+(a+b+c)^n+(-a-b+c)^n+(-b+c)^n+(-a+c)^n](2/3)^n=2(p^2+pq+q^2)^(hn)

(24)

for n=1, 3, 5, any positive integer h, and where

a = (omega(p-qomega)^(2h)-(p-qomega^2)^(2h))/(omega-1)

(25)

b = ((p-qomega)^(2h)-(p-qomega^2)^(2h))/(omega(omega-1))

(26)

c = 1/2(p^2+pq+q^2)^h

(27)

with omega a complex cube root of unity and a and b for both cases rational for arbitrary rationals p and q.

Multigrade sum-product identities as binary quadratic forms also exist for third, fourth, fifth powers. These are the second of the following pairs.

For third powers with k.4.4,

 (ax+v_1y)^k+(bx-v_1y)^k+(cx-v_2y)^k+(dx+v_2y)^k 
=(ax-v_1y)^k+(bx+v_1y)^k+(cx+v_2y)^k+(dx-v_2y)^k 
(ax^2-v_1xy+bwy^2)^k+(bx^2+v_1xy+awy^2)^k+(cx^2+v_2xy+dwy^2)^k+(dx^2-v_2xy+cwy^2)^k 
=(a^k+b^k+c^k+d^k)(x^2+wy^2)^k

(28)

for k=1, 3, (v_1,v_2)=(c^2-d^2,a^2-b^2), and w=(a+b) or (c+d) for arbitrary abcdx, and y.

For fourth powers with k.3.3,

 (ax+v_1y)^k+(bx-v_2y)^k+(cx-v_3y)^k 
=(ax-v_1y)^k+(bx+v_2y)^k+(cx+v_3y)^k 
+(ax^2+2v_1xy-3ay^2)^k+(bx^2-2v_2xy-3by^2)^k+(cx^2-2v_3xy-3cy^2)^k=(a^k+b^k+c^k)(x^2+3y^2)^k

(29)

for k=2, 4, (v_1,v_2,v_3,c)=(a+2b,2a+b,a-b,a+b), for arbitrary abxy.

For fifth powers with k.6.6,

 (a_1x+v_1y)^k+(a_2x-v_2y)^k+(a_3x+v_3y)^k+(a_4x-v_3y)^k+(a_5x+v_2y)^k+(a_6x-v_1y)^k 
=(a_1x-v_1y)^k+(a_2x+v_2y)^k+(a_3x-v_3y)^k+(a_4x+v_3y)^k+(a_5x-v_2y)^k+(a_6x+v_1y)^k 
=(a_1x^2+2v_1xy+3a_6y^2)^k+(a_2x^2-2v_2xy+3a_5y^2)^k+(a_3x^2+2v_3xy+3a_4y^2)^k+(a_4x^2-2v_3xy+3a_3y^2)^k+(a_5x^2+2v_2xy+3a_2y^2)^k+(a_6x^2-2v_1xy+3a_1y^2)^k 
=(a_1^k+a_2^k+a_3^k+a_4^k+a_5^k+a_6^k)(x^2+3y^2)^k

(30)

for k=1, 2, 3, 4, 5, (a_1,a_2,a_3,a_4,a_5,a_6)=(a+c,b+c,-a-b+c,a+b+c,-b+c,-a+c)(v_1,v_2,v_3)=(a+2b,2a+b,a-b) (which are the same v_i for fourth powers) for arbitrary abcxy and one for seventh powers that uses sqrt(2).

For seventh powers with k.8.8,

 (a_1x+v_1y)^k+(a_2x+v_2y)^k+(a_3x+v_3y)^k+(a_4x+v_4y)^k 
+(a_5x-v_4y)^k+(a_6x-v_3y)^k+(a_7x-v_2y)^k+(a_8x-v_1y)^k 
=(a_1x-v_1y)^k+(a_2x-v_2y)^k +(a_3x-v_3y)^k+(a_4x-v_4y)^k 
+(a_5x+v_4y)^k+(a_6x+v_3y)^k+(a_7x+v_2y)^k+(a_8x+v_1y)^k 
+(a_1x^2+v_1xy+a_8y^2)^k+(a_2x^2+v_2xy+a_7y^2)^k 
+(a_3x^2+v_3xy+a_6y^2)^k+(a_4x^2+v_4xy+a_5y^2)^k 
+(a_5x^2-v_4xy+a_4y^2)^k+(a_6x^2-v_3xy+a_3y^2)^k 
+(a_7x^2-v_2xy+a_2y^2)^k+(a_8x^2-v_1xy+a_1y^2)^k 
=(a_1^k+a_2^k+a_3^k+a_4^k+a_5^k+a_6^k+a_7^k+a_8^k)(x^2+y^2)^k

(31)

for k=1 to 7, (a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8)=(sqrt(2)a+c,sqrt(2)b+c,-a+b+c,-a-b+c,a+b+c,a-b+c,-sqrt(2)b+c,-sqrt(2)+c)(v_1,v_2,v_3,v_4)=(2sqrt(2)b,-2sqrt(2)a,-2(a+b),2(a-b)), for arbitrary, abcxy (Piezas 2006).

A multigrade 5-parameter binary quadratic form identity exists for k.4.4 with k=1, 2, 3, 5. Given arbitrary variables abcxy and defining u=a^2-b^2 and v=b^2-c^2, then

 [(-a+b+c)x^2+2(cu-bv)xy-(a+b+c)uvy^2]^k+[(a-b+c)x^2+2(cu+bv)xy+(a+b-c)uvy^2]^k+[(a+b-c)x^2+2(-cu-bv)xy+(a-b+c)uvy^2]^k+[-(a+b+c)x^2+2(-cu+bv)xy+(-a+b+c)uvy^2]^k-[-(a+b+c)x^2+2(-bu+av)xy+(a+b-c)uvy^2]^k-[(a+b-c)x^2+2(bu-av)xy-(a+b+c)uvy^2]^k-[(a-b+c)x^2+2(-bu-av)xy+(-a+b+c)uvy^2]^k-[(-a+b+c)x^2+2(bu+av)xy+(a-b+c)uvy^2]^k=0

(32)

for k=1, 2, 3, 5 (T. Piezas, pers. comm., Apr. 27, 2006).

Chernick (1937) gave a multigrade binary quadratic form parametrization to k.4.4 for k=2, 4, 6 given by

 (5m^2+9mn+10n^2)^k+(m^2-13mn-6n^2)^k+(7m^2-5mn-8n^2)^k+(9m^2+7mn-4n^2)^k 
=(9m^2+5mn+4n^2)^k+(m^2+15mn+8n^2)^k+(5m^2-7mn-10n^2)^k+(7m^2+5mn-6n^2)^k,

(33)

an equation which depends on finding solutions to 4a^2+ab+b^2=7c^2.

Sinha (1966ab) gave a multigrade binary quadratic form parametrization to k.5.5 for k=1, 3, 5, 7 given by

 (-7m^2+62mn-30n^2)^k+(7m^2+38mn-50n^2)^k+(5m^2-8mn-22n^2)^k+(19m^2-32mn-42n^2)^k+(-19m^2+36mn-62n^2)^k 
=(-9m^2+66mn-42n^2)^k+(5m^2+42mn-62n^2)^k+(-21m^2+38mn-22n^2)^k+(9m^2-14mn-50n^2)^k+(21m^2-36mn-30n^2)^k

(34)

which depended on solving the system a_1^j+a_2^j+a_3^j=b_1^j+b_2^j+b_3^j for j=2 and 4 with a_i and b_i satisfying certain other conditions.

Sinha (1966ab), using a result of Letac, also gave a multigrade parametrization to k.5.5 for k=1, 2, 4, 6, 8 given by

 (a-r)^k+(a+r)^k+(3b-t)^k+(3b+t)^k+(4a)^k 
=(b-t)^k+(b+t)^k+(3a-r)^k+(3a+r)^k+(4b)^k,

(35)

where a^2+12b^2=r^2 and 12a^2+b^2=t^2. One nontrivial solution can be given by a=109b=11869/2, and Sinha and Smyth proved in 1990 that there are an infinite number of distinct nontrivial solutions.

 


 

REFERENCES:

Chernick, J. "Ideal Solutions of the Tarry-Escott Problem." Amer. Math. Monthly 44, 62600633, 1937.

Gloden, A. Mehrgeradige Gleichungen. Groningen, Netherlands: Noordhoff, 1944.

Gloden, A. "Sur la multigrade A_1A_2A_3A_4A_5=^kB_1B_2B_3B_4B_5 (k=1, 3, 5, 7)." Revista Euclides 8, 383-384, 1948.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 143, 1994.

Kraitchik, M. "Multigrade." §3.10 in Mathematical Recreations. New York: W. W. Norton, p. 79, 1942.

Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 171-173, 1979.

Moessner, A. and Gloden, A. "Einige Zahlentheoretische Untersuchungen und Resultate." Bull. Sci. École Polytech. de Timisoara 11, 196-219, 1944.

Piezas, T. "Ramanujan and Fifth Power Identities." https://www.geocities.com/titus_piezas/Ramfifth.html.

Piezas, T. "Binary Quadratic Forms as Equal Sums of Like Powers." https://www.geocities.com/titus_piezas/Binary_quad.html.

Rivera, C. "Problems & Puzzles: Puzzle 065-Multigrade Relations." https://www.primepuzzles.net/puzzles/puzz_065.htm.

Sinha, T. "On the Tarry-Escott Problem." Amer. Math. Monthly 73, 280-285, 1966a.

Sinha, T. "Some System of Diophantine Equations of the Tarry-Escott Type." J. Indian Math. Soc. 30, 15-25, 1966b.

EN