تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Multigrade Equation
المؤلف:
Chernick, J.
المصدر:
"Ideal Solutions of the Tarry-Escott Problem." Amer. Math. Monthly 44
الجزء والصفحة:
...
3-6-2020
1223
A -multigrade equation is a Diophantine equation of the form
![]() |
(1) |
for , ...,
, where
and
are
-vectors. Multigrade identities remain valid if a constant is added to each element of
and
(Madachy 1979), so multigrades can always be put in a form where the minimum component of one of the vectors is 1.
Moessner and Gloden (1944) give a bevy of multigrade equations. Small-order examples are the (2, 3)-multigrade with {1,6,8}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline9.gif" style="height:15px; width:76px" /> and
{2,4,9}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline10.gif" style="height:15px; width:72px" />:
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
the (3, 4)-multigrade with {1,5,8,12}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline17.gif" style="height:15px; width:98px" /> and
{2,3,10,11}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline18.gif" style="height:15px; width:101px" />:
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
and the (4, 6)-multigrade with {1,5,8,12,18,19}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline28.gif" style="height:15px; width:142px" /> and
{2,3,9,13,16,20}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline29.gif" style="height:15px; width:138px" />:
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
(Madachy 1979).
A spectacular example with and
is given by
{+/-12,+/-11881,+/-20231,+/-20885,+/-23738}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline44.gif" style="height:15px; width:279px" /> and
{+/-436,+/-11857,+/-20449,+/-20667,+/-23750}" src="https://mathworld.wolfram.com/images/equations/MultigradeEquation/Inline45.gif" style="height:15px; width:290px" /> (Guy 1994), which has sums
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
Rivera considers multigrade equations involving primes, consecutive primes, etc.
Analogous multigrade identities to Ramanujan's fourth power identity of form
![]() |
(20) |
can also be given for third and fifth powers, the former being
![]() |
(21) |
with , 2, 3, for any positive integer
, and where
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
and the one for fifth powers
![]() |
(24) |
for , 3, 5, any positive integer
, and where
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
with a complex cube root of unity and
and
for both cases rational for arbitrary rationals
and
.
Multigrade sum-product identities as binary quadratic forms also exist for third, fourth, fifth powers. These are the second of the following pairs.
For third powers with ,
![]() |
(28) |
for , 3,
, and
or
for arbitrary
,
,
,
,
, and
.
For fourth powers with ,
![]() |
(29) |
for , 4,
, for arbitrary
,
,
,
.
For fifth powers with ,
![]() |
(30) |
for , 2, 3, 4, 5,
,
(which are the same
for fourth powers) for arbitrary
,
,
,
,
and one for seventh powers that uses
.
For seventh powers with ,
![]() |
(31) |
for to 7,
,
, for arbitrary,
,
,
,
,
(Piezas 2006).
A multigrade 5-parameter binary quadratic form identity exists for with
, 2, 3, 5. Given arbitrary variables
,
,
,
,
and defining
and
, then
![]() |
(32) |
for , 2, 3, 5 (T. Piezas, pers. comm., Apr. 27, 2006).
Chernick (1937) gave a multigrade binary quadratic form parametrization to for
, 4, 6 given by
![]() |
(33) |
an equation which depends on finding solutions to .
Sinha (1966ab) gave a multigrade binary quadratic form parametrization to for
, 3, 5, 7 given by
![]() |
(34) |
which depended on solving the system for
and 4 with
and
satisfying certain other conditions.
Sinha (1966ab), using a result of Letac, also gave a multigrade parametrization to for
, 2, 4, 6, 8 given by
![]() |
(35) |
where and
. One nontrivial solution can be given by
,
, and Sinha and Smyth proved in 1990 that there are an infinite number of distinct nontrivial solutions.
REFERENCES:
Chernick, J. "Ideal Solutions of the Tarry-Escott Problem." Amer. Math. Monthly 44, 62600633, 1937.
Gloden, A. Mehrgeradige Gleichungen. Groningen, Netherlands: Noordhoff, 1944.
Gloden, A. "Sur la multigrade ,
,
,
,
,
,
,
,
(
, 3, 5, 7)." Revista Euclides 8, 383-384, 1948.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 143, 1994.
Kraitchik, M. "Multigrade." §3.10 in Mathematical Recreations. New York: W. W. Norton, p. 79, 1942.
Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 171-173, 1979.
Moessner, A. and Gloden, A. "Einige Zahlentheoretische Untersuchungen und Resultate." Bull. Sci. École Polytech. de Timisoara 11, 196-219, 1944.
Piezas, T. "Ramanujan and Fifth Power Identities." https://www.geocities.com/titus_piezas/Ramfifth.html.
Piezas, T. "Binary Quadratic Forms as Equal Sums of Like Powers." https://www.geocities.com/titus_piezas/Binary_quad.html.
Rivera, C. "Problems & Puzzles: Puzzle 065-Multigrade Relations." https://www.primepuzzles.net/puzzles/puzz_065.htm.
Sinha, T. "On the Tarry-Escott Problem." Amer. Math. Monthly 73, 280-285, 1966a.
Sinha, T. "Some System of Diophantine Equations of the Tarry-Escott Type." J. Indian Math. Soc. 30, 15-25, 1966b.