1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Proth Prime

المؤلف:  Caldwell, C.

المصدر:  "Proth Prime." https://primes.utm.edu/glossary/page.php?sort=ProthPrime.

الجزء والصفحة:  ...

27-9-2020

876

Proth Prime

A Proth number that is prime, i.e., a number of the form N=k·2^n+1 for odd kn a positive integer, and 2^n>k. Factors of Fermat numbers are of this form as long as they satisfy the condition k odd and k<2^n. For example, the factor 6700417=1+52347·2^7 of F_5 is not a Proth prime since 52347>2^7. (Otherwise, every odd prime would be a Proth prime.)

Proth primes satisfy Proth's theorem, i.e., a number N of this form is prime iff there exists a number a such that a^((N-1)/2) is congruent to -1 modulo N. This provides an easy computational test for Proth primes. Yves Gallot has written a downloadable program for testing Proth primes and many of the largest currently known primes have been found with this program.

A Sierpiński number of the second kind is a number k satisfying Sierpiński's composite number theorem, i.e., a Proth number k such that k·2^n+1 is composite for every n>=1.

The first few Proth primes are 3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, ... (OEIS A080076).

The following table gives the first few indices n such that k·2^n+1 is prime for small k.

k OEIS values of n for which k·2^n+1 is prime
1   1, 2, 4, 8, 16, ...
3 A002253 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, ...
5 A002254 1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127, 1947, ...
7 A032353 2, 4, 6, 14, 20, 26, 50, 52, 92, 120, ...
9 A002256 1, 2, 3, 6, 7, 11, 14, 17, 33, 42, 43, 63, ...

REFERENCES:

Ballinger, R. "Proth Search Page." https://www.prothsearch.net/.

Caldwell, C. "Proth Prime." https://primes.utm.edu/glossary/page.php?sort=ProthPrime.

Caldwell, C. K. "Yves Gallot's Proth.exe: An implementation of Proth's Theorem for Windows." https://www.utm.edu/research/primes/programs/gallot/.

Keller, W. "The Least Prime of the Form k.2n+1 for Certain Values of k." Abstr. Amer. Math. Soc. 9, 417-418, 1988.

McNamara, J. and Mills, M. "Factoring of Proth Numbers." https://www.fidn.org/proth1.html.

Sloane, N. J. A. Sequences A002253/M1318, A002254/M2635, A002256/M0751, A032353, and A080076 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي