تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Sum of Prime Factors
المؤلف:
Sloane, N. J. A.
المصدر:
Sequences A001414/M0461, A002217/M0150, A008472, A029908, A046022, A088685, and A088686 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
12-10-2020
840
Let be the sum of prime factors (with repetition) of a number
. For example,
, so
. Then
for
, 2, ... is given by 0, 2, 3, 4, 5, 5, 7, 6, 6, 7, 11, 7, 13, 9, 8, ... (OEIS A001414). The sum of prime factors function is also known as the integer logarithm.
The high-water marks are 0, 2, 3, 4, 5, 7, 11, 13, 17, ..., which occur at positions 1, 2, 3, 4, 5, 7, 11, 13, 17, ... (OEIS A046022), which, with the exception of the first term, correspond exactly to the actual values of the high-water marks.
If is considered to be 0 for
a prime, then the sequence of high-water marks is 0, 4, 5, 6, 7, 9, 10, 13, 15, 19, 21, 25, 31, 33, ... (OEIS A088685), which occur at positions 1, 4, 6, 8, 10, 14, 21, 22, 26, 34, 38, 46, 58, ... (OEIS A088686). Rather amazingly, if the first 7 terms are dropped, then the last digit of the high-water marks
and the last digit of their positions
fall into one of the four patterns
, (3, 2), (5, 6), or (9, 4) (A. Jones, pers. comm., October 5, 2003).
Now consider iterating until a fixed point (which will either be 0 or a prime) is reached. For example, 20 would give the sequence 20, 9, 6, 5, 5, .... The fixed points for
, 2, ... are then given by 0, 2, 3, 4, 5, 5, 7, 5, 5, 7, 11, 7, 13, ... (OEIS A029908), and the lengths of the corresponding sequences are 2, 1, 1, 1, 1, 2, 1, 3, 3, 2, 1, 2, 1, 4, ... (OEIS A002217).
Now consider the restricted sums of the iteration lists after discarding the initial term. For example, 20 would give . Then the only numbers less than
that are equal to the sums of their restricted iteration lists are 20, 38, and 74.
The similar function giving the sum of distinct prime factors of
can also be considered. For
, 2, ..., this function has the values 0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, ... (OEIS A008472).
REFERENCES:
Sloane, N. J. A. Sequences A001414/M0461, A002217/M0150, A008472, A029908, A046022, A088685, and A088686 in "The On-Line Encyclopedia of Integer Sequences."