تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Divisibility Tests
المؤلف:
Burton, D. M.
المصدر:
"Special Divisibility Tests." §4.3 in Elementary Number Theory, 4th ed. Boston, MA: Allyn and Bacon
الجزء والصفحة:
...
27-1-2021
1476
In general, an integer is divisible by
iff the digit sum
is divisible by
.
Write a positive decimal integer out digit by digit in the form
. The following rules then determine if
is divisible by another number by examining the congruence properties of its digits. In congruence notation,
means that the remainder when
is divided by a modulus
is
. (Note that it is always true that
for any base.)
1. All integers are divisible by 1.
2. , so
for
. Therefore, if the last digit
is divisible by 2 (i.e., is even), then so is
.
3. ,
,
, ...,
(mod 3). Therefore, if the digit sum
is divisible by 3, so is
(Wells 1986, p. 48). In general, if the sum of any permutation of the digits of
in any order is divisible by 3, then so is
.
4a. ,
, ...,
(mod 4). So if the last two digits are divisible by 4, then so is
.
4b. If is, then so is
.
5. , so
for
. Therefore, if the last digit
is divisible by 5 (i.e., is 5 or 0), then so is
.
6a. If is divisible by 3 and is even, then
is also divisible by 6.
6b. ,
, ...,
(mod 6). Therefore, if
is divisible by 6, so is
. The final number can then, of course, be further reduced using the same procedure.
7a. ,
,
,
,
,
(mod 7), and the sequence then repeats. Therefore, if
is divisible by 7, so is
. This method was found by Pascal.
7b. An alternate test proceeds by multiplying by 3 and adding to
, then repeating the procedure up through
. The final number can then, of course, be further reduced using the same procedure. If the result is divisible by 7, then so is the original number (Wells 1986, p. 70).
7c. A third test multiplies by 5 and adds it to
, proceeding up through
. The final number can then, of course, be further reduced using the same procedure. If the result is divisible by 7, then so is the original number (Wells 1986, p. 70).
7d. Given a number, form two numbers and
such that
consists of all digits of the number except the last (units) digit and
is the last digit. Compute
and repeat the procedure. Then the original number is divisible by 7 iff the number in the last step is divisible by 7.
8. ,
,
, ...,
(mod 8). Therefore, if the last three digits are divisible by 8, more specifically if
is, then so is
(Wells 1986, p. 72).
9. (Rule of nines). ,
,
, ...,
(mod 9). Therefore, if the digit sum
is divisible by 9, so is
(Wells 1986, p. 74).
10. (mod 10), so if the last digit is 0, then
is divisible by 10.
11. ,
,
,
, ... (mod 11). Therefore, if
is divisible by 11, then so is
.
12. ,
,
, ... (mod 12). Therefore, if
is divisible by 12, then so is
. Divisibility by 12 can also be checked by seeing if
is divisible by 3 and 4.
13. ,
,
,
,
,
(mod 13), and the pattern repeats. Therefore, if
is divisible by 13, so is
.
For additional tests for 13, see Gardner (1991).
An interesting piece of English language trivia is that the word "indivisibilities" has more "i"s (in fact, seven of them) than any other common word. (Other words with seven i's include, honorificabilitudinitatibus, indistinguishabilities, indivisibilities, and supercalifragilisticexpialidocious. Phrases with eight i's include "Illinois fighting Illini" and "infinite divisibility." The English word with the most possible i's is floccinaucinihilipilification (nine i's), where "floccinaucinihilipilification" means "the action or habit of estimating as worthless.")
REFERENCES:
Burton, D. M. "Special Divisibility Tests." §4.3 in Elementary Number Theory, 4th ed. Boston, MA: Allyn and Bacon, pp. 89-96, 1989.
Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, pp. 337-346, 2005.
Gardner, M. "Tests of Divisibility." Ch. 14 in The Unexpected Hanging and Other Mathematical Diversions. Chicago, IL: Chicago University Press, pp. 160-169, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 48, 1986.