تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Fisher,s Exact Test
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
1-5-2021
2107
Fisher's exact test is a statistical test used to determine if there are nonrandom associations between two categorical variables.
Let there exist two such variables and
, with
and
observed states, respectively. Now form an
matrix in which the entries
represent the number of observations in which
and
. Calculate the row and column sums
and
, respectively, and the total sum
![]() |
(1) |
of the matrix. Then calculate the conditional probability of getting the actual matrix given the particular row and column sums, given by
![]() |
(2) |
which is a multivariate generalization of the hypergeometric probability function. Now find all possible matrices of nonnegative integers consistent with the row and column sums and
. For each one, calculate the associated conditional probability using (2), where the sum of these probabilities must be 1.
To compute the P-value of the test, the tables must then be ordered by some criterion that measures dependence, and those tables that represent equal or greater deviation from independence than the observed table are the ones whose probabilities are added together. There are a variety of criteria that can be used to measure dependence. In the case, which is the one Fisher looked at when he developed the exact test, either the Pearson chi-square or the difference in proportions (which are equivalent) is typically used. Other measures of association, such as the likelihood-ratio-test,
-squared, or any of the other measures typically used for association in contingency tables, can also be used.
The test is most commonly applied to matrices, and is computationally unwieldy for large
or
. For tables larger than
, the difference in proportion can no longer be used, but the other measures mentioned above remain applicable (and in practice, the Pearson statistic is most often used to order the tables). In the case of the
matrix, the P-value of the test can be simply computed by the sum of all
-values which are
.
For an example application of the test, let
be a journal, say either Mathematics Magazine or Science, and let
be the number of articles on the topics of mathematics and biology appearing in a given issue of one of these journals. If Mathematics Magazine has five articles on math and one on biology, and Science has none on math and four on biology, then the relevant matrix would be
![]() |
(3) |
Computing gives
![]() |
(4) |
and the other possible matrices and their s are
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
which indeed sum to 1, as required. The sum of -values less than or equal to
is then 0.0476 which, because it is less than 0.05, is significant. Therefore, in this case, there would be a statistically significant association between the journal and type of article appearing.