النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Humoral/Antibody-Mediated Immune Response
المؤلف:
APURBA S. SASTRY , SANDHYA BHAT
المصدر:
Essentials Of Medical Microbiology 2021
الجزء والصفحة:
3rd edition , p189-192
2025-09-15
58
Antibody-mediated immune response (AMI) provides protection to the host by secreting antibodies; that prevent invasion of microbes present on the surface of the host cells and in the extracellular environment, but has no role against intracellular microbes. AMI occurs through the following three sequential steps:
1. Activation of B cells following contact with the microbial antigen (B cells act as APCs)
2. Proliferation and differentiation of B cells into effector cells (antibody producing plasma cells) and memory cells
3. Effector function: Production of antibodies by plasma cells which in turn counter act with the microbes in many ways, such as neutralization, opsonization, complement activation, etc.
Activation of B Cells
Antigens that activate B cells fall into two categories.
1. Most antigens are thymus-dependent (TD); they activate B cells indirectly via activation of T cells. TD antigens are processed by APCs, presented to TH cells following which the activated TH cells secrete cytokines that in turn activate the B cells
2. The thymus independent (TI) antigens (e.g. bacterial capsule) are not processed by APC. They can directly activate B cells without the help of T cell induced cytokines.
TD antigens induced activation of B cell is described below.
Antigen Presentation of B Cells to Activated TH Cells
The first and foremost step that occurs is recognition of microbial antigen (TD antigen) by B cell membrane immunoglobulin receptors (mIg) followed by receptor mediated endocytosis of antigen. Then the antigen is processed into smaller antigenic peptides that are presented in complex with MHC-II to activated TH cells (by endocytic pathway). This leads to induction of three signals.
Signal Induction
The naive B cells are in the resting stage. Activation requires induction of three signals (Fig. 1).
1. Signal 1: It is induced by the cross linking of IgM on B cell membrane with the microbial antigen
2. Signal 2: It is an additional signal provided by binding of CD40 on B cell with CD40L (ligand) on activated TH cells
3. Signal 3: It is usually a cytokine stimulus. Cytokines produced by the activated TH cells bind to specific cytokine receptor on B cells.
Fig1. Antigen presentation of B cells to activated TH cells and signal induction
Signal Transduction
Following induction of signal, its transmission is essential for B cell activation.
* Signal transduction is initiated by the B cell receptor (BCR). The BCR comprises of two parts (Fig. 2)
1. Antigen-binding membrane Ig
2. Ig-α/Ig-β heterodimer.
* Following antigen cross linkage to membrane Ig, the Ig-α/Ig-β heterodimer is activated and in turn transmits the signal, ultimately leading to activation of B cells.
Fig2. B cell signal transduction.
proliferation and Differentiation of B Cells
As described in Chapter 14, the naive B cells, released from bone marrow go and house in the B cell areas of peripheral lymphoid organs (e.g. cortex of lymph node and marginal zone of spleen). There, the naive B cells are organized to form primary lymphoid follicles.
* Following the antigenic exposure, the naive B cells are activated and then they proliferate
* Eventually, the primary lymphoid follicles transform into secondary lymphoid follicles
* Secondary lymphoid follicles bear a germinal center which in turn has two areas; dark zone and light zone. Events occurring in the secondary lymphoid follicles are as follows.
Events in the Dark Zone of Germinal Center (Fig. 3)
The activated B cells differentiate into larger dividing cells called centroblasts, which further transform into smaller non dividing cells called centrocytes by expressing membrane Ig.
* Centroblasts express the membrane Ig by undergoing a type of mutation called somatic hypermutations. These are point mutations arising due to insertion or deletion in the variable region of Ig gene
* This results in alteration of the membrane Ig affinity by which it binds with the corresponding antigen. Thus, the resultant centrocytes would bear membrane Ig with altered affinity
* Because somatic hypermutations occur randomly; they generate membrane Ig with both high and low affinity
- The centrocytes with low affinity membrane Ig undergo apoptosis and then are phagocytosed by special type of macrophages found in lymphoid follicles called tingible body macrophages
- The centrocytes with high affinity membrane Ig are allowed to survive, following which they migrate to the light zone. The process of enhancement of affinity of membrane Ig for antigen binding is called affinity maturation.
Events in the Light Zone of Germinal Center (Fig. 3)
* Binding of centrocytes to follicular dendritic cells: The centrocytes with high affinity membrane Ig undergo maturation by binding to a special type of dendritic cell called follicular dendritic cell (see box below). Then the mature centrocytes undergo class switch over
* Class switch over: Early in the immune response, IgM is the predominant immunoglobulin secreted by the B cells. But as the maturation progresses, the same B cells undergo a phenomenon called class switch over to produce Ig of other classes (Fig. 3)
- Class switch over occus in the light zone of lymphoid follicles, where the positively selected centrocytes interact with activated TH cells and receive a cytokine signal for class switching
- Binding of cytokines produced by TH cells to cytokine receptors present on centrocytes surface induces class switch over
- Different cytokines induce production of different classes of Ig by switching mechanism (Table 1).
* Differentiation of centrocytes into plasma cells and memory cells:
- After undergoing class switch over, the selected centrocytes further undergo differentiation into effector cells (plasma cells) and memory cells in the light zone of germinal center
- Plasma cells are large antibody-secreting cells; produce secretory Ig enormously, but do not synthesize membrane Ig. They do not have MHC-II molecules and do not undergo further class switch over
- Memory cells bear high affinity membrane Ig molecules of all classes as compared to naive B cell that bear only low affinity IgM or IgD membrane Ig. They are long lived cells which respond to the secondary antigenic stimulus.
Fig3. Differentiation of B cells in secondary lymphoid follicles.
Table1. Cytokines secreted by TH cells and the respective Ig class/subclass they induce.
Effector Functions of AMI
Antibodies secreted from plasma cells mediate a number of biological functions through their Fc portions that bind to Fc receptors (FcRs) expressed by many cell types.
* Promotes opsonization: FcRs present on phagocyte surface recognize antibody coated microbes, bind to them and that leads to enhanced phagocytosis (Fig. 4)
* Transcytosis: Poly-Ig receptors are expressed on the inner (basolateral) surface of epithelial cells (facing the blood). They bind to dimers of IgA and multimers of IgM antibodies and transfer them through the cell to their apical (outer) surface and into the lumen of an organ (e.g. the intestine). This is a process referred to as transcytosis and is responsible for the accumulation of antibodies in the lumen of the organ (Fig.5)
* Mediates mucosal immunity: Transcytosis of IgA to gut lumen provides mucosal immunity by neutralizing the microbes at local mucosal sites
* Activates complement-mediated inflammation and cytolysis: Antigen antibody complex activates the classical complement pathway (Fig. 6). The final complement factors (C5-C9), also called membrane attack complex which has lethal activity by forming pores on the target cells
* Promotes ADCC: Though ADCC is principally cell mediated (described under CMI section); antibodies direct the cells to reach to the target cells. ADCC is important to provide immunity against:
- Helminths (eosinophil-IgE mediated)
- Tumor cells and virus infected cells (NK cell-IgG mediated).
Fig4. Opsonization of bacteria and phagocytosis.
Fig5. Transcytosis of dimeric IgA.
Fig6. Complement-mediated cytolysis.
الاكثر قراءة في المناعة
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
