

النبات

مواضيع عامة في علم النبات

الجذور - السيقان - الأوراق

النباتات الوعائية واللاوعائية

البذور (مغطاة البذور - عاريات البذور)

الطحالب

النباتات الطبية


الحيوان

مواضيع عامة في علم الحيوان

علم التشريح

التنوع الإحيائي

البايلوجيا الخلوية


الأحياء المجهرية

البكتيريا

الفطريات

الطفيليات

الفايروسات


علم الأمراض

الاورام

الامراض الوراثية

الامراض المناعية

الامراض المدارية

اضطرابات الدورة الدموية

مواضيع عامة في علم الامراض

الحشرات


التقانة الإحيائية

مواضيع عامة في التقانة الإحيائية


التقنية الحيوية المكروبية

التقنية الحيوية والميكروبات

الفعاليات الحيوية

وراثة الاحياء المجهرية

تصنيف الاحياء المجهرية

الاحياء المجهرية في الطبيعة

أيض الاجهاد

التقنية الحيوية والبيئة

التقنية الحيوية والطب

التقنية الحيوية والزراعة

التقنية الحيوية والصناعة

التقنية الحيوية والطاقة

البحار والطحالب الصغيرة

عزل البروتين

هندسة الجينات


التقنية الحياتية النانوية

مفاهيم التقنية الحيوية النانوية

التراكيب النانوية والمجاهر المستخدمة في رؤيتها

تصنيع وتخليق المواد النانوية

تطبيقات التقنية النانوية والحيوية النانوية

الرقائق والمتحسسات الحيوية

المصفوفات المجهرية وحاسوب الدنا

اللقاحات

البيئة والتلوث


علم الأجنة

اعضاء التكاثر وتشكل الاعراس

الاخصاب

التشطر

العصيبة وتشكل الجسيدات

تشكل اللواحق الجنينية

تكون المعيدة وظهور الطبقات الجنينية

مقدمة لعلم الاجنة


الأحياء الجزيئي

مواضيع عامة في الاحياء الجزيئي


علم وظائف الأعضاء


الغدد

مواضيع عامة في الغدد

الغدد الصم و هرموناتها

الجسم تحت السريري

الغدة النخامية

الغدة الكظرية

الغدة التناسلية

الغدة الدرقية والجار الدرقية

الغدة البنكرياسية

الغدة الصنوبرية

مواضيع عامة في علم وظائف الاعضاء

الخلية الحيوانية

الجهاز العصبي

أعضاء الحس

الجهاز العضلي

السوائل الجسمية

الجهاز الدوري والليمف

الجهاز التنفسي

الجهاز الهضمي

الجهاز البولي


المضادات الميكروبية

مواضيع عامة في المضادات الميكروبية

مضادات البكتيريا

مضادات الفطريات

مضادات الطفيليات

مضادات الفايروسات

علم الخلية

الوراثة

الأحياء العامة

المناعة

التحليلات المرضية

الكيمياء الحيوية

مواضيع متنوعة أخرى

الانزيمات
T Lymphocytes, Transfer of Safety Genes, and Strategies to Improve Tumor Cell Specificity
المؤلف:
Hoffman, R., Benz, E. J., Silberstein, L. E., Heslop, H., Weitz, J., & Salama, M. E.
المصدر:
Hematology : Basic Principles and Practice
الجزء والصفحة:
8th E , P301
2026-01-15
132
A major problem of any successful cell therapy is that adverse events produced by the infused cells may persist and worsen if the cells survive and proliferate. A classic example is the GVHD that occurs when allogeneic donor T cells are transferred with the hematopoietic graft. It is also clear, however, that even nonalloreactive T cells may cause serious and even lethal toxicities, particularly if they are genetically modified to target highly expressed self-antigens present both on tumors and normal tissues. Examples include CRS and ICANS as discussed above with CAR-T-cell therapy, as well as potential on-tumor, off-target toxicities. In addition, efforts to enhance the survival and expansion of T cells could lead to uncontrolled expansion of the manipulated T cells, an event that might even occur as a result of retroviral genotoxicity alone, although this has been observed primarily in clinical studies of hematopoietic stem cells transduced by murine oncoretroviral vectors and has not emerged as a significant limitation of CAR-T-cell therapy. For all these reasons, there has been increasing interest in the incorporation of safety switches or suicide genes in any T cell that is adoptively transferred to humans.
Safety or suicide genes have been best studied in the recipients of DLI in patients with hematologic malignancies relapsed after allogeneic HSCT to prevent the occurrence of GVHD. Adequate doses of donor T cells can only be safely given if there is some means by which unwanted alloreactivity can be abrogated in vivo. Efforts have been made to achieve this aim by genetically modifying T cells through the introduction of suicide genes.
Herpes simplex thymidine kinase (HSVtk) was the first such transgene to be studied in the context of adoptive cellular therapy. HSVtk phosphorylates specific nucleoside analogues, including ganciclovir, to nucleoside monophosphates. These compounds block effective DNA synthesis and kill dividing cells. In several clinical trials, this gene has been transferred to donor T lymphocytes, which have then been given to the allogeneic stem cell transplant recipient to prevent or treat relapse. While HSVtk gene-modified T cells have been shown to persist in the circulation in most patients, and to be removed after the administration of ganciclovir, often with an improvement in GVHD, several problems have limited the use of this approach. HSVtk is a viral protein and in some patients, a cell-mediated immune response against HSVtk is detected, causing undesired premature elimination of transgenic cells. Other drawbacks of HSVtk include the unintended elimination of gene-modified cells when ganciclovir is used for treatment of CMV reactivation, ganciclovir resistance that may occur from truncated HSVtk generated from cryptic splice donor and acceptor sites, and slow elimination of transgenic cells as HSVtk requires DNA synthesis to be active; such delayed activity may be undesirable if T cells are acutely toxic. Alternative strategies have included the genetic modification of T cells to express CD20 or truncated epidermal growth factor receptor (EGFRt), allowing the use of rituximab or cetuximab, respectively, to eliminate the modified T cells via complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). While these approaches are being incorporated into multiple ongoing clinical trials, there are significant potential limitations, including the biodistribution of the infused monoclonal antibody and on-target toxicity from the antibody.
Investigators attempted to overcome some of these limitations by developing new suicide genes based on human molecules that are potentially less immunogenic and which overcome the limitations related to antibody bioavailability. In particular, suicide genes have been generated based on chimeric molecules derived from human proteins involved in the apoptotic pathway, which have been modified to be activated by a small molecule (inducible Fas and inducible Caspase9 [iC9]). Two clinical studies have used the iC9 gene, which consists of the human FK506-binding protein sequence with an F36V mutation, connected to human caspase-9 deleted for its endogenous activation and caspase-activating recruitment domain. FKBP12-F36V binds with high affinity an otherwise bioinert small molecule dimerizing agent (AP1903). In the presence of the drug, the iCasp9 promolecule dimerizes and activates the intrinsic apoptotic pathway leading to cell death. The study infused donor-derived iCas pase9-T cells after haploidentical stem cell transplant and if patients developed GVHD, administered a single dose of the dimerizing drug. There was rapid destruction of greater than 95% of the cells with prompt resolution of GVHD and faster immune reconstitution that allowed robust protection against opportunistic infection. This system has been incorporated into CAR-T-cell constructs being evaluated in multiple ongoing clinical trials, including an ongoing trial of CD19-specific CAR-T cells for relapsed/refractory ALL.
The safety genes discussed above will likely become increasingly important tools to minimize potentially severe toxicities such as CRS and ICANS. However, these strategies can only be utilized once such toxicities have already developed. A preventative strategy will depend on an improved understanding of the mechanisms underlying these syndromes.
Although less of a concern for B-cell malignancies given the relative tolerability of the off-tumor, on-target toxicity directed at normal B cells that accompanies CD19-directed cellular therapies, potential on-target toxicities remain a significant barrier toward the wider applicability of TCR- and CAR-engineered T-cell therapies. For most other malignancies, the applicability of CAR-T-cell therapies has been limited by the difficulty in identifying a single target antigen that can be safely targeted without the risk of unacceptable on-target toxicities. There has thus been significant pre-clinical work toward the development of strategies that could improve the specificity of CAR-T cells for tumor cells. Dual antigen recognition strategies have been hypothesized that would allow better discrimination between tumor cells and normal tissue. One compelling pre-clinical example involves a combinatorially activated T-cell circuit, referred to as a “two antigen AND-gate circuit,” in which activation of a synthetic Notch receptor for one antigen induces expression of a CAR targeted toward a second antigen. At this point, however, the clinical feasibility of such strategies has yet to be demonstrated.
الاكثر قراءة في المناعة
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)