الوضع الليلي
انماط الصفحة الرئيسية

النمط الأول

النمط الثاني

0

تنويه

تمت اضافة الميزات التالية

1

الوضع الليلي جربه الآن

2

انماط الصفحة الرئيسية

النمط الاول

النمط الثاني

يمكنك تغيير الاعدادات مستقبلاً من خلال الايقونة على يسار الشاشة

1
المرجع الالكتروني للمعلوماتية

علم الكيمياء

تاريخ الكيمياء والعلماء المشاهير

التحاضير والتجارب الكيميائية

المخاطر والوقاية في الكيمياء

اخرى

مقالات متنوعة في علم الكيمياء

كيمياء عامة

الكيمياء التحليلية

مواضيع عامة في الكيمياء التحليلية

التحليل النوعي والكمي

التحليل الآلي (الطيفي)

طرق الفصل والتنقية

الكيمياء الحياتية

مواضيع عامة في الكيمياء الحياتية

الكاربوهيدرات

الاحماض الامينية والبروتينات

الانزيمات

الدهون

الاحماض النووية

الفيتامينات والمرافقات الانزيمية

الهرمونات

الكيمياء العضوية

مواضيع عامة في الكيمياء العضوية

الهايدروكاربونات

المركبات الوسطية وميكانيكيات التفاعلات العضوية

التشخيص العضوي

تجارب وتفاعلات في الكيمياء العضوية

الكيمياء الفيزيائية

مواضيع عامة في الكيمياء الفيزيائية

الكيمياء الحرارية

حركية التفاعلات الكيميائية

الكيمياء الكهربائية

الكيمياء اللاعضوية

مواضيع عامة في الكيمياء اللاعضوية

الجدول الدوري وخواص العناصر

نظريات التآصر الكيميائي

كيمياء العناصر الانتقالية ومركباتها المعقدة

مواضيع اخرى في الكيمياء

كيمياء النانو

الكيمياء السريرية

الكيمياء الطبية والدوائية

كيمياء الاغذية والنواتج الطبيعية

الكيمياء الجنائية

الكيمياء الصناعية

البترو كيمياويات

الكيمياء الخضراء

كيمياء البيئة

كيمياء البوليمرات

مواضيع عامة في الكيمياء الصناعية

الكيمياء الاشعاعية والنووية

The Population Mean m and the Sample Mean x̅

المؤلف:  D. A. Skoog, F. J.Holler, D M. West, and S. R. Crouch

المصدر:  Fundamentals of Analytical Chemistry

الجزء والصفحة:  9th. p 99

26-4-2017

2125

The Population Mean m and the Sample Mean

Scientists find it useful to differentiate between the sample mean and the population mean. The sample mean is the arithmetic average of a limited sample drawn from a population of data. The sample mean is defined as the sum of the measurement values divided by the number of measurements as given by Equation in below.

In that equation, N represents the number of measurements in the sample set. The population mean m, in contrast, is the true mean for the population. It is also defined by Equation above with the added provision that N represents the total number of measurements in the population. In the absence of systematic error, the population mean is also the true value for the measured quantity.

To emphasize the difference between the two means, the sample mean is symbolized by and the population mean by μ. More often than not, particularly when N is small, differs from m because a small sample of data may not exactly represent its population. In most cases we do not know μ and must infer its value from . The probable difference between and m decreases rapidly as the number of measurements making up the sample increases; usually by the time N reaches 20 to 30, this difference is negligible. Note that the sample mean is a statistic that estimates the population parameter μ.

EN