المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة
الفارق بين المشهورات والأوليات الرد على ما ذهبت اليه الاشاعرة في مسالة التحسين والتقبيح العقليين المتطفلات Parasites (مصطلحات مهمة بشأن امراض النبات) معنى قوله تعالى : وَلَقَدْ جَاءَهُمْ رَسُولٌ مِنْهُمْ معنى قوله تعالى : وَلَقَدْ خَلَقْنَا الْإِنْسَانَ مِنْ صَلْصَالٍ مِنْ حَمَإٍ مَسْنُونٍ معنى قوله تعالى : وَلَقَدْ هَمَّتْ بِهِ وَهَمَّ بِهَا لَوْ لا أَنْ رَأى بُرْهانَ رَبِّهِ من خطبة لأمير المؤمنين "ع" تسمى القاصعة من خطبة لأمير المؤمنين "ع" يحمد اللّه ويثني على نبيه ويوصي بالزهد والتقوى معنى قوله تعالى : وَلَمْ يَتَّخِذْ وَلَدًا وَلَمْ يَكُنْ لَهُ شَرِيكٌ فِي الْمُلْكِ من خطبة لأمير المؤمنين "ع" يحمد اللّه ويثني على نبيه ويعظ بالتقوى معنى قوله تعالى : وَلَمْ يَلْبِسُوا إِيمَانَهُمْ بِظُلْمٍ معنى قوله تعالى : وَلَهَدَيْنَاهُمْ صِرَاطًا مُسْتَقِيمًا مصدر الإصابة Cause of infections (مصطلحات مهمة بشأن امراض النبات) مقاييس تقييم الأداء في بيئة الأعمال المعاصرة العلامات المرضية Disease Sings (مصطلحات مهمة بشأن امراض النبات)

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

الأمير عبد الحسين بن مير محمد باقر الحسيني
20-12-2017
Friction
15-12-2016
آداب المجلس / التزحزح.
2023-03-29
زكاة الفطرة
5-10-2018
قدم الخالق العظيم و صفاته
31-7-2016
التوزيع الجغرافي لسكان الوطن العربي وكثافتهم
2024-11-09

Newton-Girard Formulas  
  
1243   02:53 مساءً   date: 13-2-2019
Author : Séroul, R
Book or Source : "Newton-Girard Formulas." §10.12 in Programming for Mathematicians. Berlin: Springer-Verlag
Page and Part : pp. 278-279


Read More
Date: 13-2-2019 1116
Date: 23-2-2019 936
Date: 4-3-2019 1248

Newton-Girard Formulas

 

The identities between the symmetric polynomials Pi_k(x_1,...,x_n) and the sums of kth powers of their variables

 S_k(x_1,...,x_n)=sum_(j=1)^nx_j^k.

(1)

The identities are given by

 (-1)^mmPi_m(x_1,...,x_n)+sum_(k=1)^m(-1)^(k+m)S_k(x_1,...,x_n)Pi_(m-k)(x_1,...,x_n)=0

(2)

for each 1<=m<=n and for an arbitrary number of variables n. The first few identities are

S_1-Pi_1 = 0

(3)

S_2-S_1Pi_1+2Pi_2 = 0

(4)

S_3-S_2Pi_1+S_1Pi_2-3Pi_3 = 0

(5)

S_4-S_3Pi_1+S_2Pi_2-S_1Pi_3+4Pi_4 = 0.

(6)

 


REFERENCES:

Séroul, R. "Newton-Girard Formulas." §10.12 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 278-279, 2000.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.