Dirichlet Integrals
المؤلف:
Jeffreys, H. and Jeffreys, B. S.
المصدر:
"Dirichlet Integrals." §15.08 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press
الجزء والصفحة:
...
30-7-2019
1743
Dirichlet Integrals
There are several types of integrals which go under the name of a "Dirichlet integral." The integral
![D[u]=int_Omega|del u|^2dV](http://mathworld.wolfram.com/images/equations/DirichletIntegrals/NumberedEquation1.gif) |
(1)
|
appears in Dirichlet's principle.
The integral
![1/(2pi)int_(-pi)^pif(x)(sin[(n+1/2)x])/(sin(1/2x))dx,](http://mathworld.wolfram.com/images/equations/DirichletIntegrals/NumberedEquation2.gif) |
(2)
|
where the kernel is the Dirichlet kernel, gives the
th partial sum of the Fourier series.
Another integral is denoted
{0 for |gamma_k|>alpha_k; 1 for |gamma_k|<alpha_k " src="http://mathworld.wolfram.com/images/equations/DirichletIntegrals/NumberedEquation3.gif" style="height:41px; width:304px" /> |
(3)
|
for
, ...,
.
There are two types of Dirichlet integrals which are denoted using the letters
,
,
, and
. The type 1 Dirichlet integrals are denoted
,
, and
, and the type 2 Dirichlet integrals are denoted
,
, and
.
The type 1 integrals are given by
where
is the gamma function. In the case
,
 |
(6)
|
where the integration is over the triangle
bounded by the x-axis, y-axis, and line
and
is the beta function.
The type 2 integrals are given for
-D vectors
and
, and
,
 |
(7)
|
 |
(8)
|
 |
(9)
|
where
and
are the cell probabilities. For equal probabilities,
. The Dirichlet
integral can be expanded as a multinomial series as
 |
(12)
|
For small
,
and
can be expressed analytically either partially or fully for general arguments and
.
where
 |
(15)
|
is a hypergeometric function.
where
 |
(18)
|
REFERENCES:
Jeffreys, H. and Jeffreys, B. S. "Dirichlet Integrals." §15.08 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 468-470, 1988.
Sobel, M.; Uppuluri, R. R.; and Frankowski, K. Selected Tables in Mathematical Statistics, Vol. 4: Dirichlet Distribution--Type 1. Providence, RI: Amer. Math. Soc., 1977.
Sobel, M.; Uppuluri, R. R.; and Frankowski, K. Selected Tables in Mathematical Statistics, Vol. 9: Dirichlet Integrals of Type 2 and Their Applications. Providence, RI: Amer. Math. Soc., 1985.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة