 
					
					
						Jacobi Triple Product					
				 
				
					
						 المؤلف:  
						Andrews, G. E
						 المؤلف:  
						Andrews, G. E					
					
						 المصدر:  
						q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc.
						 المصدر:  
						q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 29-9-2019
						29-9-2019
					
					
						 3818
						3818					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Jacobi Triple Product
 
The Jacobi triple product is the beautiful identity
 
	
		
			|  | (1) | 
	
In terms of the Q-functions, (1) is written
	
		
			|  | (2) | 
	
which is one of the two Jacobi identities. In q-series notation, the Jacobi triple product identity is written
	
		
			|  | (3) | 
	
for  and
 and  (Gasper and Rahman 1990, p. 12; Leininger and Milne 1999). Another form of the identity is
 (Gasper and Rahman 1990, p. 12; Leininger and Milne 1999). Another form of the identity is
	
		
			|  | (4) | 
	
(Hirschhorn 1999).
Dividing (4) by  and letting
 and letting  gives the limiting case
 gives the limiting case
(Jacobi 1829; Hardy and Wright 1979; Hardy 1999, p. 87; Hirschhorn 1999; Leininger and Milne 1999).
For the special case of  , (◇) becomes
, (◇) becomes
where  is a Jacobi elliptic function. In terms of the two-variable Ramanujan theta function
 is a Jacobi elliptic function. In terms of the two-variable Ramanujan theta function  , the Jacobi triple product is equivalent to
, the Jacobi triple product is equivalent to
	
		
			|  | (11) | 
	
(Berndt et al. 2000).
One method of proof for the Jacobi identity proceeds by defining the function
Then
Taking (14)  (13),
 (13),
which yields the fundamental relation
	
		
			|  | (17) | 
	
Now define
	
		
			|  | (18) | 
	
	
		
			|  | (19) | 
	
Using (17), (19) becomes
so
	
		
			|  | (22) | 
	
Expand  in a Laurent series. Since
 in a Laurent series. Since  is an even function, the Laurent series contains only even terms.
 is an even function, the Laurent series contains only even terms.
	
		
			|  | (23) | 
	
Equation (22) then requires that
This can be re-indexed with  on the left side of (25)
 on the left side of (25)
	
		
			|  | (26) | 
	
which provides a recurrence relation
	
		
			|  | (27) | 
	
so
The exponent grows greater by  for each increase in
 for each increase in  of 1. It is given by
 of 1. It is given by
	
		
			|  | (31) | 
	
Therefore,
	
		
			|  | (32) | 
	
This means that
	
		
			|  | (33) | 
	
The coefficient  must be determined by going back to (◇) and (◇) and letting
 must be determined by going back to (◇) and (◇) and letting  . Then
. Then
since multiplication is associative. It is clear from this expression that the  term must be 1, because all other terms will contain higher powers of
 term must be 1, because all other terms will contain higher powers of  . Therefore,
. Therefore,
	
		
			|  | (39) | 
	
so we have the Jacobi triple product,
REFERENCES:
Andrews, G. E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., pp. 63-64, 1986.
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 222, 2007.
Berndt, B. C.; Huang, S.-S.; Sohn, J.; and Son, S. H. "Some Theorems on the Rogers-Ramanujan Continued Fraction in Ramanujan's Lost Notebook." Trans. Amer. Math. Soc. 352, 2157-2177, 2000.
Borwein, J. M. and Borwein, P. B. "Jacobi's Triple Product and Some Number Theoretic Applications." Ch. 3 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 62-101, 1987.
Foata, D. and Han, G.-N. "The Triple, Quintuple and Septuple Product Identities Revisited." In The Andrews Festschrift (Maratea, 1998): Papers from the Seminar in Honor of George Andrews on the Occasion of His 60th Birthday Held in Maratea, August 31-September 6, 1998. Sém. Lothar. Combin. 42, Art. B42o, 1-12, 1999 (electronic).
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, 1990.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Hirschhorn, M. D. "Another Short Proof of Ramanujan's Mod 5 Partition Congruences, and More." Amer. Math. Monthly 106, 580-583, 1999.
Jacobi, C. G. J. Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Germany: Regiomonti, Sumtibus fratrum Borntraeger, p. 90, 1829.
Leininger, V. E. and Milne, S. C. "Expansions for  and Basic Hypergeometric Series in
 and Basic Hypergeometric Series in  ." Discr. Math. 204, 281-317, 1999.
." Discr. Math. 204, 281-317, 1999.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 470, 1990.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة