Exsecant
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
الجزء والصفحة:
p. 78
9-10-2019
2197
Exsecant

The exsecant is a little-used trigonometric function defined by
 |
(1)
|
where
is the secant.


The exsecant can be extended to the complex plane as illustrated above.
Its derivative is given by
 |
(2)
|
and its indefinite integral by
![intexsec(z)dz=ln[cos(1/2z)+sin(1/2z)]
-ln[cos(1/2z)-sin(1/2z)]-z+C.](http://mathworld.wolfram.com/images/equations/Exsecant/NumberedEquation3.gif) |
(3)
|
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 78, 1972.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة