تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Harshad Number
المؤلف:
Cai, T.
المصدر:
"On 2-Niven Numbers and 3-Niven Numbers." Fib. Quart. 34
الجزء والصفحة:
...
11-11-2020
1492
Harshad Number
A positive integer which is divisible by the sum of its digits, also called a Niven number (Kennedy et al. 1980) or a multidigital number (Kaprekar 1955). The first few are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, ... (OEIS A005349). Grundman (1994) proved that there is no sequence of more than 20 consecutive Harshad numbers, and found the smallest sequence of 20 consecutive Harshad numbers, each member of which has digits.
Grundman (1994) defined an -Harshad (or
-Niven) number to be a positive integer which is divisible by the sum of its digits in base
. Cai (1996) showed that for
or 3, there exists an infinite family of sequences of consecutive
-Harshad numbers of length
.
Define an all-Harshad (or all-Niven) number as a positive integer which is divisible by the sum of its digits in all bases . Then only 1, 2, 4, and 6 are all-Harshad numbers.
REFERENCES:
Cai, T. "On 2-Niven Numbers and 3-Niven Numbers." Fib. Quart. 34, 118-120, 1996.
Cooper, C. N. and Kennedy, R. E. "Chebyshev's Inequality and Natural Density." Amer. Math. Monthly 96, 118-124, 1989.
Cooper, C. N. and Kennedy, R. "On Consecutive Niven Numbers." Fib. Quart. 21, 146-151, 1993.
Grundman, H. G. "Sequences of Consecutive -Niven Numbers." Fib. Quart. 32, 174-175, 1994.
Kaprekar, D. R. "Multidigital Numbers." Scripta Math. 21, 27, 1955.
Kennedy, R. E. and Cooper, C. N. "On the Natural Density of the Niven Numbers." Abstract 816-11-219, Abstracts Amer. Math. Soc. 6, 17, 1985.
Kennedy, R.; Goodman, R.; and Best, C. "Mathematical Discovery and Niven Numbers." MATYC J. 14, 21-25, 1980.
Sloane, N. J. A. Sequence A005349/M0481 in "The On-Line Encyclopedia of Integer Sequences."
Vardi, I. "Niven Numbers." §2.3 in Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 19 and 28-31, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 171, 1986.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
