1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Mersenne Number

المؤلف:  Dickson, L. E.

المصدر:  History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover

الجزء والصفحة:  ...

4-1-2021

975

Mersenne Number

A Mersenne number is a number of the form

 M_n=2^n-1,

(1)

where n is an integer. The Mersenne numbers consist of all 1s in base-2, and are therefore binary repunits. The first few Mersenne numbers are 1, 3, 7, 15, 31, 63, 127, 255, ... (OEIS A000225), corresponding to 1_211_2111_21111_2, ... in binary.

The Mersenne numbers are also the numbers obtained by setting x=1 in a Fermat polynomial. They also correspond to Cunningham numbers C^-(2,n).

The number of digits D in the Mersenne number M_n is

 D=|_log(2^n-1)+1_|,

(2)

where |_x_| is the floor function, which, for large n, gives

 D approx |_nlog2+1_| approx |_0.301029n+1_|=|_0.301029n_|+1.

(3)

The number of digits in M_n is the same as the number of digits in 2^n, namely 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, ... (OEIS A034887). The numbers of decimal digits in M_(10^n) for n=0, 1, ... are given by 1, 4, 31, 302, 3011, 30103, 301030, 3010300, 30103000, 301029996, ... (OEIS A114475), which correspond to the decimal expansion of log2=0.30102999... (OEIS A007524).

The numbers of prime factors of M_n for n=1, 2, ... are 0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, ... (OEIS A046051), and the first few factorizations are

M_1 = 1

(4)

M_2 = 3

(5)

M_3 = 7

(6)

M_4 = 3·5

(7)

M_5 = 31

(8)

M_6 = 3·3·7

(9)

M_7 = 127

(10)

M_8 = 3·5·17

(11)

M_9 = 7·73

(12)

M_(10) = 3·11·31

(13)

(OEIS A001265). The smallest primes dividing M_n are therefore 1, 3, 7, 3, 31, 3, 127, 3, 7, 3, 23, 3, 8191, ... (OEIS A049479), and the largest are 1, 3, 7, 5, 31, 7, 127, 17, 73, 31, 89, 13, 8191, ... (OEIS A005420).

In order for the Mersenne number M_n to be prime, n must be prime. This is true since for composite n with factors r and sn=rs. Therefore, 2^n-1 can be written as 2^(rs)-1, which is a binomial number and can be factored. Since the most interest in Mersenne numbers arises from attempts to factor them, many authors prefer to define a Mersenne number as a number of the above form

 M_p=2^p-1,

(14)

but with p restricted to prime values.

All known Mersenne numbers M_p with p prime are squarefree. However, Guy (1994) believes that there are M_p which are not squarefree.

The search for Mersenne primes is one of the most computationally intensive and actively pursued areas of advanced and distributed computing. Edgington maintains a list of known factorizations of M_p for prime p.


REFERENCES:

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, p. 13, 2005.

Edgington, W. "Will Edgington's Mersenne Page." https://www.garlic.com/~wedgingt/mersenne.html.

Flannery, S. and Flannery, D. In Code: A Mathematical Journey. London: Profile Books, pp. 47-51, 2000.

Gardner, M. "Mathematical Games: About the Remarkable Similarity between the Icosian Game and the Towers of Hanoi." Sci. Amer. 196, 150-156, May 1957.

Guy, R. K. "Mersenne Primes. Repunits. Fermat Numbers. Primes of Shape k·2^n+2 [sic]." §A3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 8-13, 1994.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 15-16 and 22, 1979.

Pappas, T. "Mersenne's Number." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 211, 1989.

Robinson, R. M. "Mersenne and Fermat Numbers." Proc. Amer. Math. Soc. 5, 842-846, 1954.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 14, 18-19, 22, and 29-30, 1993.

Sloane, N. J. A. Sequences A000225/M2655, A001265, A005420/M2609, A007524/M2196, A034887, A046051, A049479, and A114475 in "The On-Line Encyclopedia of Integer Sequences."

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 23-24, 1999.

EN

تصفح الموقع بالشكل العمودي