 
					
					
						Unknotting Number					
				 
				
					
						 المؤلف:  
						Adams, C. C.
						 المؤلف:  
						Adams, C. C.					
					
						 المصدر:  
						The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
						 المصدر:  
						The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 15-6-2021
						15-6-2021
					
					
						 5463
						5463					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Unknotting Number
The smallest number of times  a knot
 a knot  must be passed through itself to untie it. Lower bounds can be computed using relatively straightforward techniques, but it is in general difficult to determine exact values. Many unknotting numbers can be determined from a knot's knot signature. A knot with unknotting number 1 is a prime knot (Scharlemann 1985). It is not always true that the unknotting number is achieved in a projection with the minimal number of crossings.
 must be passed through itself to untie it. Lower bounds can be computed using relatively straightforward techniques, but it is in general difficult to determine exact values. Many unknotting numbers can be determined from a knot's knot signature. A knot with unknotting number 1 is a prime knot (Scharlemann 1985). It is not always true that the unknotting number is achieved in a projection with the minimal number of crossings.
The following table is from Kirby (1997, pp. 88-89), with the values for 10-139 and 10-152 taken from Kawamura (1998). In the following table, Kirby's (1997, p. 88) value  has been corrected to reflect the fact that
 has been corrected to reflect the fact that  is only currently known to be 1 or 2 (Kawauchi 1996, p. 271). The value
 is only currently known to be 1 or 2 (Kawauchi 1996, p. 271). The value  has been computed by Stoimenow (2002). The unknotting numbers for 10-154 and 10-161 can be found using the slice-Bennequin inequality (Stoimenow 1998).
 has been computed by Stoimenow (2002). The unknotting numbers for 10-154 and 10-161 can be found using the slice-Bennequin inequality (Stoimenow 1998).
Knots for which the unknotting number is not known are 10-11, 10-47, 10-51, 10-54, 10-61, 10-76, 10-77, 10-79, 10-100 (Cha and Livingston 2008).
	
		
			|  | 0 |  | 2 |  | 2 |  | 3 |  | 2 |  | 3 |  | 2 |  | 2 |  | 1 | 
		
			|  | 1 |  | 1 |  | 1 |  | 1 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 | 
		
			|  | 1 |  | 2 |  | 1 |  | 2 |  | 2 |  | 2 |  | 2 |  | 3 |  | 2 | 
		
			|  | 2 |  | 3 |  | 1 |  | 1 |  | 2 |  | 2 |  | 2 |  | 1 |  | 1 | 
		
			|  | 1 |  | 1 |  | 2 |  | 1 |  | 2 |  | 2 |  | ? |  | 2 |  | 2 | 
		
			|  | 1 |  | 1 |  | 1 |  | ? |  | 2 |  | 1 |  | 3 |  | 1 |  | 3 | 
		
			|  | 1 |  | 4 |  | 2 |  | 2 |  | 1 |  | 2 |  | 1 |  | 1 |  | 2 | 
		
			|  | 1 |  | 1 |  | 2 |  | 2 |  | 2 |  | 1 |  | 3 |  | 1 |  | 2 | 
		
			|  | 3 |  | 3 |  | 1 |  | 2 |  | 1 |  | 2 |  | 1 |  | 3 |  | 1 | 
		
			|  | 1 |  | 2 |  | 1 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 | 
		
			|  | 2 |  | 2 |  | 3 |  | 2 |  | 3 |  | ? |  | 2 |  | 1 |  |  | 
		
			|  | 2 |  | 3 |  | 2 |  | 1 |  | ? |  | ? |  | 1 |  | 1 |  |  | 
		
			|  | 2 |  | 2 |  | 2 |  | 1 |  | 2 |  | 2 |  | 2 |  | 2 |  |  | 
		
			|  | 1 |  | 2 |  | 3 |  | 2 |  | 3 |  | ? |  | 2 |  | 4 |  |  | 
		
			|  | 1 |  | 3 |  | 1 |  | 2 |  | 2 |  | 3 |  | 2 |  | 2 |  |  | 
		
			|  | 1 |  | 3 |  | 2 |  | 2 |  | ? |  | 2 |  | 2 |  | 1 |  |  | 
		
			|  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 1 |  | 2 |  | 3 |  |  | 
		
			|  | 2 |  | 1 |  | 1 |  | 1 |  | 3 |  | 2 |  | 1 |  | 1 |  |  | 
		
			|  | 2 |  | 3 |  | 2 |  | 2 |  | ? |  | 1 |  | 1 |  | 2 |  |  | 
		
			|  | 2 |  | 1 |  | 1 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  |  | 
		
			|  | 2 |  | 2 |  | 1 |  | 1 |  | 2 |  | 2 |  | 2 |  | 1 |  |  | 
		
			|  | 1 |  | 3 |  | 2 |  | 1 |  | 2 |  | 2 |  | 2 |  | 1 |  |  | 
		
			|  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 1 |  | 1 |  | 2 |  |  | 
		
			|  | 1 |  | 2 |  | 2 |  | 2 |  | 1 |  | 2 |  | 1 |  | 2 |  |  | 
		
			|  | 2 |  | 1 |  | 3 |  | 1 |  | 1 |  | 2 |  | 3 |  | 2 |  |  | 
		
			|  | 1 |  | 2 |  | 1 |  | 1 |  | ? |  | 1 |  | 2 |  | 2 |  |  | 
		
			|  | 2 |  | 1 |  | 3 |  | 1 |  | 2 |  | 2 |  | 2 |  | 4 |  |  | 
		
			|  | 1 |  | 1 |  | 2 |  | 1 |  | 2 |  | 2 |  | 2 |  | 2 |  |  | 
		
			|  | 1 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 4 |  | 3 |  |  | 
		
			|  | 2 |  | 1 |  | 2 |  | 2 |  | 2 |  | 1 |  | 2 |  | 2 |  |  | 
	
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 57-64, 1994.
Cha, J. C. and Livingston, C. "Unknown Values in the Table of Knots." 2008 May 16. https://arxiv.org/abs/math.GT/0503125.
Cipra, B. "From Knot to Unknot." What's Happening in the Mathematical Sciences, Vol. 2. Providence, RI: Amer. Math. Soc., pp. 8-13, 1994.
Kawamura, T. "The Unknotting Numbers of  and
 and  Are 4." Osaka J. Math. 35, 539-546, 1998.
 Are 4." Osaka J. Math. 35, 539-546, 1998.
Kawauchi, A. "Knot Invariants." Appendix F.3 in A Survey of Knot Theory. Boston: Birkhäuser, 1996.
Kirby, R. (Ed.). "Problems in Low-Dimensional Topology." AMS/IP Stud. Adv. Math., 2.2, Geometric Topology (Athens, GA, 1993). Providence, RI: Amer. Math. Soc., pp. 35-473, 1997.
Scharlemann, M. "Unknotting Number One Knots Are Prime." Invent. Math. 82, 37-55, 1985.
Stoimenow, A. "Polynomial Values, the Linking Form, and Unknotting Numbers." https://www.math.toronto.edu/stoimeno/goer.ps.gz. Feb. 10, 2002.
Stoimenow, A. "Positive Knots, Closed Braids and the Jones Polynomial." https://www.math.toronto.edu/stoimeno/pos.ps.gz. Mar. 2, 2002.
				
				
					
					 الاكثر قراءة في  التبلوجيا
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة