x

هدف البحث

بحث في العناوين

بحث في المحتوى

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

Delannoy Number

المؤلف:  Banderier, C. and Schwer, S

المصدر:  "Why Delannoy Numbers?" To appear in J. Stat. Planning Inference. http://www-lipn.univ-paris13.fr/~banderier/Papers/delannoy2004.ps.

الجزء والصفحة:  ...

16-9-2021

737

Delannoy Number

The Delannoy numbers D(a,b) are the number of lattice paths from (0,0) to (b,a) in which only east (1, 0), north (0, 1), and northeast (1, 1) steps are allowed (i.e., ->^, and ->). They are given by the recurrence relation

 D(a,b)=D(a-1,b)+D(a,b-1)+D(a-1,b-1),

(1)

with D(0,0)=1. The are also given by the sums

D(n,k) = sum_(d=0)^(n)(k; d)(n+k-d; k)

(2)

= sum_(d=0)^(n)2^d(k; d)(n; d)

(3)

= (n+k; k)_2F_1(-n,-k;-(k+n);-1),

(4)

where _2F_1(a,b;c;z) is a hypergeometric function.

A table for values for the Delannoy numbers is given by

 1 1 1 1 1 1 1 1 1 ...; 1 3 5 7 9 11 13 15 17 ...; 1 5 13 25 41 61 85 113 145 ...; 1 7 25 63 129 231 377 575 833 ...; 1 9 41 129 321 681 1289 2241 3649 ...; 1 11 61 231 681 1683 3653 7183 13073 ...

(5)

(OEIS A008288) for m=0, 1, ... increasing from left to right and n=0, 1, ... increasing from top to bottom.

They have the generating function

 sum_(p,q=1)^inftyD(p,q)x^py^q=(1-x-y-xy)^(-1)

(6)

(Comtet 1974, p. 81).

DelannoyNumber

Taking n=a=b gives the central Delannoy numbers D(n,n), which are the number of "king walks" from the (0,0) corner of an n×n square to the upper right corner (n,n). These are given by

 D(n,n)=P_n(3),

(7)

where P_n(x) is a Legendre polynomial (Moser 1955; Comtet 1974, p. 81; Vardi 1991). Another expression is

D(n) = D(n,n)

(8)

= sum_(k=0)^(n)(n; k)(n+k; k)

(9)

= _2F_1(-n,n+1;1,-1),

(10)

where (a; b) is a binomial coefficient and _2F_1(a,b;c;z) is a hypergeometric function. These numbers have a surprising connection with the Cantor set (E. W. Weisstein, Apr. 9, 2006).

They also satisfy the recurrence equation

 D(n)=(3(2n-1)D(n-1)-(n-1)D(n-2))/n.

(11)

They have generating function

G(x) = 1/(sqrt(1-6x+x^2))

(12)

= 1+3x+13x^2+63x^3+321x^4+....

(13)

The values of D(n) for n=1, 2, ... are 3, 13, 63, 321, 1683, 8989, 48639, ... (OEIS A001850). The numbers of decimal digits in D(10^n,10^n) for n=0, 1, ... are 1, 7, 76, 764, 7654, 76553, 765549, 7655510, ... (OEIS A114470), where the digits approach those of log_(10)(3+2sqrt(2))=0.765551... (OEIS A114491).

The first few prime Delannoy numbers are 3, 13, 265729, ... (OEIS A092830), corresponding to indices 1, 2, 8, ..., with no others for n<1.1×10^5 (Weisstein, Mar. 8, 2004).

The Schröder numbers bear the same relation to the Delannoy numbers as the Catalan numbers do to the binomial coefficients.

Amazingly, taking the Cholesky decomposition of the square array of D(a,b), transposing, and multiplying it by the diagonal matrix diag(2^(-0/2),2^(-1/2),2^(-2/2),...) gives the square matrix (i.e., lower triangular) version of Pascal's triangle (G. Helms, pers. comm., Aug. 29, 2005).

DelannoyNumberArrays

Beautiful fractal patterns can be obtained by plotting D(a,b) (mod m) (E. Pegg, Jr., pers. comm., Aug. 29, 2005). In particular, the m=3 case corresponds to a pattern resembling the Sierpiński carpet.


REFERENCES:

Banderier, C. and Schwer, S. "Why Delannoy Numbers?" To appear in J. Stat. Planning Inference. http://www-lipn.univ-paris13.fr/~banderier/Papers/delannoy2004.ps.

Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 80-81, 1974.

Dickau, R. M. "Delannoy and Motzkin Numbers." http://www.prairienet.org/~pops/delannoy.html.

Goodman, E. and Narayana, T. V. "Lattice Paths with Diagonal Steps." Canad. Math. Bull. 12, 847-855, 1969.

Moser, L. "King Paths on a Chessboard." Math. Gaz. 39, 54, 1955.

Moser, L. and Zayachkowski, H. S. "Lattice Paths with Diagonal Steps." Scripta Math. 26, 223-229, 1963.

Sloane, N. J. A. Sequences A001850/M2942, A008288 , A092830, A114470, and A114491 in "The On-Line Encyclopedia of Integer Sequences."

Stocks, D. R. Jr. "Lattice Paths in E^3 with Diagonal Steps." Canad. Math. Bull. 10, 653-658, 1967.

Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, 1991.

 شعار المرجع الالكتروني للمعلوماتية




البريد الألكتروني :
info@almerja.com
الدعم الفني :
9647733339172+