x

هدف البحث

بحث في العناوين

بحث في المحتوى

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

Symmetric LQ Method

المؤلف:  Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van der Vorst, H.

المصدر:  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994. http://www.netlib.org/linalg/html_templates/Templates.html.

الجزء والصفحة:  ...

1-12-2021

808

Symmetric LQ Method

The conjugate gradient method can be viewed as a special variant of the Lanczos method for positive definite symmetric systems. The minimal residual method and symmetric LQ method (SYMMLQ) are variants that can be applied to symmetric indefinite systems.

The vector sequences in the conjugate gradient method correspond to a factorization of a tridiagonal matrix similar to the coefficient matrix. Therefore, a breakdown of the algorithm can occur corresponding to a zero pivot if the matrix is indefinite. Furthermore, for indefinite matrices the minimization property of the conjugate gradient method is no longer well-defined. The MINRES and SYMMLQ methods are variants of the CG method that avoid the LU decomposition and do not suffer from breakdown. SYMMLQ solves the projected system, but does not minimize anything (it keeps the residual orthogonal to all previous ones).

When A is not positive definite, but symmetric, we can still construct an orthogonal basis for the Krylov subspace by three-term recurrence relations. Eliminating the search directions in the equations of the conjugate gradient method gives a recurrence

 Ar^((i))=r^((i+1))t_(i+1,i)+r^((i))t_(i,i)+r^((i-1))t_(i-1,i),

(1)

which can be written in matrix form as

 AR_i=R_(i+1)T^__i,

(2)

where T^__i is an (i+1)×i tridiagonal matrix.

In this case we have the problem that (·,·)_(A) no longer defines an inner product. However we can still try to minimize the residual in the 2-norm by obtaining

 x^((i)) in {r^((0)),Ar^((0)),...,A^(i-1)r^((0))},    x^((i))=R_iy^_

(3)

that minimizes

|Ax^((i))-b|_2 = |AR_iy^_-b|_2

(4)

= |R_(i+1)T^__iy-b|_2.

(5)

Now we exploit the fact that if

 D_(i+1)=diag(|r^((0))|_2,|r^((1))|_2,...,|r^((i))|_2),

(6)

then R_(i+1)D_(i+1)^(-1) is an orthonormal transformation with respect to the current Krylov subspace:

 |Ax^((i))-b|_2=|D_(i+1)T^__iy-|r^((0))|_2e^((1))|_2,

(7)

and this final expression can simply be seen as a minimum norm least squares problem.

One approach is to solve the system T_iy=|r^((0))|_2e^((1)), as in the conjugate gradient method (T_i is the upper i×i part of T^__i). However, other than in the conjugate gradient method, we cannot rely on the existence of a Cholesky decomposition (since A is not positive definite). An alternative is then to decompose T_i by an LQ decomposition. This leads to simple recurrences and the resulting method is known as SYMMLQ (Paige and Saunders 1975).


REFERENCES:

Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA: SIAM, 1994. http://www.netlib.org/linalg/html_templates/Templates.html.

Paige, C.; Parlett, B.; and van der Vorst, H. "Approximate Solutions and Eigenvalue Bounds from Krylov Subspaces." Numer. Lin. Alg. Appl. 29, 115-134, 1995.

Paige, C. and Saunders, M. "Solution of Sparse Indefinite Systems of Linear Equations." SIAM J. Numer. Anal. 12, 617-629, 1975.

 شعار المرجع الالكتروني للمعلوماتية




البريد الألكتروني :
info@almerja.com
الدعم الفني :
9647733339172+