تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Steiner Tree
المؤلف:
Chlebik, M. and J.Chlebikova, J
المصدر:
"Approximation Hardness of the Steiner Tree Problem on Graphs." Proc. 8th Scandinavian Workshop on Algorithm Theory (SWAT). Springer-Verlag
الجزء والصفحة:
...
8-5-2022
2246
Steiner Tree
The Steiner tree of some subset of the vertices of a graph is a minimum-weight connected subgraph of
that includes all the vertices. It is always a tree. Steiner trees have practical applications, for example, in the determination of the shortest total length of wires needed to join some number of points (Hoffman 1998, pp. 164-165).
The determination of a Steiner tree is NP-complete and hard even to approximate. There is 1.55-approximate algorithm due to Robins and Zelikovski (2000), but approximation within 95/94 is known to be NP-hard (Chlebik and Chlebikova 2002).
REFERENCES
Chlebik, M. and J.Chlebikova, J. "Approximation Hardness of the Steiner Tree Problem on Graphs." Proc. 8th Scandinavian Workshop on Algorithm Theory (SWAT). Springer-Verlag, pp. 170-179, 2002.
Chopra, S. and Rao, M. R. "The Steiner Tree Problem 1: Formulations, Compositions, and Extension of Facets." Mathematical Programming 64, 209-229, 1994.
Chopra, S. and Rao, M. R. "The Steiner Tree Problem 2: Properties and Classes of Facets." Mathematical Programming 64, 231-246, 1994.
Chung, F. R. K.; Gardner, M.; and Graham, R. L. "Steiner Trees on a Checkerboard." Math. Mag. 62, 83-96, 1989.
Cieslik, D. Steiner Minimal Trees. Amsterdam: Kluwer, 1998.
Du, D.-Z.; Smith, J. M.; and Rubinstein, J. H. Advances in Steiner Trees. Dordrecht, Netherlands: Kluwer, 2000.Ganley, J. "The Steiner Tree Page." http://ganley.org/steiner/.Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.
Hwang, F.; Richards, D.; and Winter, P. The Steiner Tree Problem. Amsterdam, Netherlands: North-Holland, 1992.
Ivanov, A. O. and Tuzhilin, A. A. Minimal Networks: The Steiner Problem and Its Generalizations. Boca Raton, FL: CRC Press, 1994.
Robins, G. and Zelikovski, A. "Improved Steiner Tree Approximation in Graphs." In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms. pp. 770-779, 2000.
Skiena, S. S. "Steiner Tree." §8.5.10 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 339-342, 1997.