النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Fertilization
المؤلف:
T.W. Sadler
المصدر:
Langmans Medical Embryology
الجزء والصفحة:
14th E, p38-41
2025-06-11
53
Fertilization, the process by which male and female gametes fuse, occurs in the ampullary region of the uterine tube. This is the widest part of the tube and is close to the ovary (Fig. 1). Spermatozoa may remain viable in the female reproductive tract for several days.
Fig1. Relation of fimbriae and ovary. Fimbriae collect the oocyte and sweep it into the uterine tube.
Only 1% of sperm deposited in the vagina enter the cervix, where they may survive form any hours. Movement of sperm from the cervix to the uterine tube occurs by muscular contractions of the uterus and uterine tube and very little by their own propulsion. The trip from cervix to oviduct can occur as rapidly as 30 minutes or as slow as 6 days.
After reaching the isthmus, sperm become less motile and cease their migration. At ovulation, sperm again become motile, perhaps because of chemoattractants produced by cumulus cells sur rounding the egg, and swim to the ampulla where fertilization usually occurs. Spermatozoa are not able to fertilize the oocyte immediately upon arrival in the female genital tract but must undergo (1) capacitation and (2) the acrosome reaction to acquire this capability.
Capacitation is a period of conditioning in the female reproductive tract that in the human lasts approximately 7 hours. Thus, speeding to the ampulla is not an advantage because capacitation has not yet occurred and such sperm are not capable of fertilizing the egg. Much of this conditioning during capacitation occurs in the uterine tube and involves epithelial interactions between the sperm and the mucosal surface of the tube. During this time, a glycoprotein coat and seminal plasma proteins are removed from the plasma membrane that overlies the acrosomal region of the spermatozoa. Only capacitated sperm can pass through the corona cells and undergo the acrosome reaction.
The acrosome reaction, which occurs after binding to the zona pellucida, is induced by zona proteins. This reaction culminates in the release of enzymes needed to penetrate the zona pellucida, including acrosin- and trypsin-like substances (Fig.2).
Fig2. A. Scanning electron micrograph of sperm binding to the zona pellucida. B. The three phases of oocyte penetration. In phase 1, spermatozoa pass through the corona radiata barrier; in phase 2, one or more spermatozoa penetrate the zona pellucida; and in phase 3, one spermatozoon penetrates the oocyte mem— brane while losing its own plasma membrane. Inset shows normal spermatocyte with acrosomal head cap.
The phases of fertilization include the following:
- Phase 1, penetration of the corona radiata
- Phase 2, penetration of the zona pellucida
- Phase 3, fusion of the oocyte and sperm cell membranes
Phase 1: Penetration of the Corona Radiata
Of the 200 to 300 million spermatozoa normally deposited in the female genital tract, only 300 to 500 reach the site of fertilization. Only one of these fertilizes the egg. It is thought that the others aid the fertilizing sperm in penetrating the barriers protecting the female gamete. Capacitated sperm pass freely through corona cells (Fig. 2).
Phase 2: Penetration of the Zona Pellucida
The zona is a glycoprotein shell surrounding the egg that facilitates and maintains sperm binding and induces the acrosome reaction. Both binding and the acrosome reaction are mediated by the ligand ZP3, a zona protein. Release of acrosomal enzymes (acrosin) allows sperm to penetrate the zona, thereby coming in contact with the plasma membrane of the oocyte (Fig. 2). Permeability of the zona pellucida changes when the head of the sperm comes in contact with the oocyte surface. This contact results in release of lysosomal enzymes from cortical granules lining the plasma membrane of the oocyte. In turn, these enzymes alter properties of the zona pel lucida (zona reaction) to prevent sperm penetration and inactivate species-specific receptor sites for spermatozoa on the zona surface. Other spermatozoa have been found embedded in the zona pellucida, but only one seems to be able to penetrate the oocyte (Fig. 3).
Fig3. A. Oocyte immediately after ovulation, showing the spindle of the second meiotic division. B. A spermatozoon has penetrated the oocyte, which has finished its second meiotic division. Chromosomes of the oocyte are arranged in a vesicular nucleus, the female pronucleus. Heads of several sperm are stuck in the zona pellucida. C. Male and female pronuclei. D,E. Chromosomes become arranged on the spindle, split longitudinally, and move to opposite poles. F. Two—cell stage.
Phase 3: Fusion of the Oocyte and Sperm Cell Membranes
The initial adhesion of sperm to the oocyte is mediated in part by the interaction of integrins on the oocyte and their ligands, disintegrins, on sperm. After adhesion, the plasma membranes of the sperm and egg fuse (Fig. 2). Because the plasma membrane covering the acrosomal head cap dis appears during the acrosome reaction, actual fusion is accomplished between the oocyte mem brane and the membrane that covers the posterior region of the sperm head (Fig. 2). In the human, both the head and the tail of the spermatozoon enter the cytoplasm of the oocyte, but the plasma membrane is left behind on the oocyte surface. As soon as the spermatozoon has entered the oocyte, the egg responds in three ways:
1. Cortical and zona reactions. As a result of the release of cortical oocyte granules, which contain lysosomal enzymes, (1) the oocyte membrane becomes impenetrable to other spermatozoa, and (2) the zona pellucida alters its structure and composition to pre vent sperm binding and penetration. These reactions prevent polyspermy (penetration of more than one spermatozoon into the oocyte).
2. Resumption of the second meiotic division. The oocyte finishes its second meiotic division immediately after entry of the spermatozoon. One of the daughter cells, which receives hardly any cytoplasm, is known as the second polar body; the other daughter cell is the definitive oocyte. Its chromosomes (22 plus X) arrange themselves in a vesicular nucleus known as the female pronucleus (Figs. 3 and 4).
Fig4. A. Phase contrast view of the pronuclear stage of a fertilized human oocyte with male and female pronuclei. B. Two—cell stage of human zygote.
3. Metabolic activation of the egg. The activating factor is probably carried by the spermatozoon. Activation encompasses the initial cellular and molecular events associated with early embryogenesis.
The spermatozoon, meanwhile, moves forward until it lies close to the female pronucleus. Its nucleus becomes swollen and forms the male pronucleus (Fig. 3); the tail detaches and de generates. Morphologically, the male and female pronuclei are indistinguishable, and eventually, they come into close contact and lose their nu clear envelopes (Fig. 4A). During growth of male and female pronuclei (both haploid), each pronucleus must replicate its DNA. If it does not, each cell of the two-cell zygote has only half of the normal amount of DNA. Immediately after DNA synthesis, chromosomes organize on the spindle in preparation for a normal mitotic division.
The 23 maternal and 23 paternal (double) chromosomes split longitudinally at the centromere, and sister chromatids move to opposite poles, providing each cell of the zygote with the nor mal diploid number of chromosomes and DNA (Fig. 3D,E). As sister chromatids move to opposite poles, a deep furrow appears on the sur face of the cell, gradually dividing the cytoplasm into two parts (Figs. 3F and 4B). The main results of fertilization are as follows:
- Restoration of the diploid number of chromosomes, half from the father and half from the mother. Hence, the zygote contains a new combination of chromosomes different from both parents.
- Determination of the sex of the new individual. An X-carrying sperm produces a female (XX) embryo, and a Y—carrying sperm produces a male (XY) embryo. Therefore, the chromosomal sex of the embryo is determined at fertilization.
- Initiation of cleavage. Without fertilization, the oocyte usually degenerates 24 hours after ovulation.