

علم الكيمياء

تاريخ الكيمياء والعلماء المشاهير

التحاضير والتجارب الكيميائية

المخاطر والوقاية في الكيمياء

اخرى

مقالات متنوعة في علم الكيمياء

كيمياء عامة


الكيمياء التحليلية

مواضيع عامة في الكيمياء التحليلية

التحليل النوعي والكمي

التحليل الآلي (الطيفي)

طرق الفصل والتنقية


الكيمياء الحياتية

مواضيع عامة في الكيمياء الحياتية

الكاربوهيدرات

الاحماض الامينية والبروتينات

الانزيمات

الدهون

الاحماض النووية

الفيتامينات والمرافقات الانزيمية

الهرمونات


الكيمياء العضوية

مواضيع عامة في الكيمياء العضوية

الهايدروكاربونات

المركبات الوسطية وميكانيكيات التفاعلات العضوية

التشخيص العضوي

تجارب وتفاعلات في الكيمياء العضوية


الكيمياء الفيزيائية

مواضيع عامة في الكيمياء الفيزيائية

الكيمياء الحرارية

حركية التفاعلات الكيميائية

الكيمياء الكهربائية


الكيمياء اللاعضوية

مواضيع عامة في الكيمياء اللاعضوية

الجدول الدوري وخواص العناصر

نظريات التآصر الكيميائي

كيمياء العناصر الانتقالية ومركباتها المعقدة


مواضيع اخرى في الكيمياء

كيمياء النانو

الكيمياء السريرية

الكيمياء الطبية والدوائية

كيمياء الاغذية والنواتج الطبيعية

الكيمياء الجنائية


الكيمياء الصناعية

البترو كيمياويات

الكيمياء الخضراء

كيمياء البيئة

كيمياء البوليمرات

مواضيع عامة في الكيمياء الصناعية

الكيمياء الاشعاعية والنووية
The drift speed
المؤلف:
Peter Atkins، Julio de Paula
المصدر:
ATKINS PHYSICAL CHEMISTRY
الجزء والصفحة:
ص764-766
2025-12-25
48
The drift speed
When the potential difference between two electrodes a distance l apart is ∆φ, the ions in the solution between them experience a uniform electric field of magnitude
E=
In such a field, an ion of charge ze experiences a force of magnitude
F=zeE=
(In this chapter we disregard the sign of the charge number and so avoid notational complications.) A cation responds to the application of the field by accelerating towards the negative electrode and an anion responds by accelerating towards the positive electrode. However, this acceleration is short-lived. As the ion moves through the solvent it experiences a frictional retarding force, Ffric, proportional to its speed. If we assume that the Stokes formula (eqn 19.12) for a sphere of radius a and speed s applies even on a microscopic scale (and independent evidence from magnetic resonance suggests that it often gives at least the right order of magnitude), then we can write this retarding force as
Ffric = fs f= 6πηa
The two forces act in opposite directions, and the ions quickly reach a terminal speed, the drift speed, when the accelerating force is balanced by the viscous drag. The net force is zero when
s =
It follows that the drift speed of an ion is proportional to the strength of the applied field. We write
s =uE
where u is called the mobility of the ion (Table 21.6). Comparison of eqns 21.41 and 21.42 and use of eqn 21.40 shows that
u==
Illustration 21.4 Calculating an ionic mobility
For an order of magnitude estimate we can take z = 1 and athe radius of an ion such as Cs+ (which might be typical of a smaller ion plus its hydration sphere), which is 170 pm. For the viscosity, we use η = 1.0 cP (1.0 × 10−3 kg m−1 s−1, Table 21.4). Then u ≈ 5 × 10−8 m2 V−1 s−1. This value means that, when there is a potential difference of 1 V across a solution of length 1 cm (so E = 100 V m−1), the drift speed is typically about 5 µm s−1. That speed might seem slow, but not when expressed on a molecular scale, for it corresponds to an ion passing about 104 solvent molecules per second.
Fig. 21.16 The mechanism of conduction by hydrogen ions in water as proposed by N. Agmon (Chem. Phys. Letts. 244, 456 (1995)). Proton transfer between neighbouring molecules occurs when one molecule rotates into such a position that an O-H···O hydrogen bond can flip into being an O···H-O hydrogen bond. See text for a description of the steps.
Because the drift speed governs the rate at which charge is transported, we might expect the conductivity to decrease with increasing solution viscosity and ion size. Experiments confirm these predictions for bulky ions (such as R4N+ and RCO2 −) but not for small ions. For example, the molar conductivities of the alkali metal ions increase from Li+ to Cs+ (Table 21.6) even though the ionic radii increase. The paradox is resolved when we realize that the radius a in the Stokes formula is the hydrodynamic radius (or ‘Stokes radius’) of the ion, its effective radius in the solution taking into account all the H2O molecules it carries in its hydration sphere. Small ions give rise to stronger electric fields than large ones (the electric field at the surface of a sphere of radius r is proportional to ze/r2 and it follows that the smaller the radius the stronger the field), so small ions are more extensively solvated than big ions. Thus, an ion of small ionic radius may have a large hydrodynamic radius because it drags many solvent molecules through the solution as it migrates. The hydrating H2O molecules are often very labile, however, and NMR and isotope studies have shown that the exchange between the coordination sphere of the ion and the bulk solvent is very rapid. The proton, although it is very small, has a very high molar conductivity (Table 21.6)! Proton and 17O-NMR show that the times characteristic of protons hopping from one molecule to the next are about 1.5 ps, which is comparable to the time that inelastic neutron scattering shows it takes a water molecule to reorientate through about 1 rad (1 to 2 ps). According to the Grotthuss mechanism, there is an effective motion of a proton that involves the rearrangement of bonds in a group of water molecules. However, the actual mechanism is still highly contentious. Attention now focuses on the H9O4 + unit, in which the nearly trigonal planar H3O+ ion is linked to three strongly solvating H2O molecules. This cluster of atoms is itself hydrated, but the hydrogen bonds in the secondary sphere are weaker than in the primary sphere. It is envisaged that the rate-determining step is the cleavage of one of the weaker hydrogen bonds of this secondary sphere (Fig. 21.16a). After this bond cleavage has taken place, and the released molecule has rotated through a few degrees (a process that takes about 1 ps), there is a rapid adjustment of bond lengths and angles in the remaining cluster, to form an H5O2 + cation of structure H2O ···H+ ···OH2 (Fig. 21.16b). Shortly after this reorganization has occurred, a new H9O4+ cluster forms as other molecules rotate into a position where they can become members of a second ary hydration sphere, but now the positive charge is located one molecule to the right of its initial location (Fig. 21.16c). According to this model, there is no coordinated motion of a proton along a chain of molecules, simply a very rapid hopping between neighbouring sites, with a low activation energy. The model is consistent with the observation that the molar conductivity of protons increases as the pressure is raised, for increasing pressure ruptures the hydrogen bonds in water. The mobility of NH4+ is also anomalous and presumably occurs by an analogous mechanism.
الاكثر قراءة في مواضيع عامة في الكيمياء الفيزيائية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)