تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Heronian Tetrahedron
المؤلف:
Buchholz, R. H.
المصدر:
"Perfect Pyramids." Bull. Austral. Math. Soc. 45
الجزء والصفحة:
...
1-6-2020
857
Heronian Tetrahedron
A Heronian tetrahedron, also called a perfect tetrahedron, is a (not necessarily regular) tetrahedron whose sides, face areas, and volume are all rational numbers. It therefore is a tetrahedron all of whose faces are Heronian triangles and additionally that has rational volume. (Note that the volume of a tetrahedron can be computed using the Cayley-Menger determinant.)
The integer Heronian tetrahedron having smallest maximum side length is the one with edge lengths 51, 52, 53, 80, 84, 117; faces (117, 80, 53), (117, 84, 51), (80, 84, 52), (53, 51, 52); face areas 1170, 1800, 1890, 2016; and volume 18144 (Buchholz 1992; Guy 1994, p. 191). This is the only integer Heronian triangle with all side lengths less than 157.
The integer Heronian tetrahedron with smallest possible surface area and volume has edges 25, 39, 56, 120, 153, and 160; areas 420, 1404, 1872, and 2688 (for a total surface area of 6384); and volume 8064 (Buchholz 1992, Peterson 2003).
R. Rathbun has cataloged Heronian triangles with perimeters smaller than . This catalog allows the following special sets of Heronian tetrahedra to be identified. The following table gives the smallest pair of primitive integer Heronian tetrahedra with the same surface area.
area | volume | edges |
64584 | 170016 | 595, 429, 208, 116, 276, 325 |
64584 | 200928 | 595, 507, 116, 208, 276, 325 |
The following table gives the smallest pair of primitive integer Heronian tetrahedra with the same volume.
area | volume | edges |
244272 | 3564288 | 697, 697, 306, 185, 185, 672 |
298248 | 3564288 | 1344, 697, 697, 153, 680, 680 |
Finally, the smallest triple of primitive integer Heronian tetrahedra with the same volume is given in the following table.
area | volume | edges |
11124120 | 501399360 | 15080, 14820, 500, 1309, 1557, 13621 |
12571944 | 501399360 | 4522, 3485, 3485, 2640, 2275, 2275 |
12667452 | 501399360 | 5280, 3485, 3485, 2261, 2652, 2652 |
The smallest examples of integer Heronian tetrahedra composed of four identical copies of a single acute triangle (i.e., disphenoids) have pairs of opposite sides (148, 195, 203), (533, 875, 888), (1183, 1479, 1804), (2175, 2296, 2431), (1825, 2748, 2873), (2180, 2639, 3111), (1887, 5215, 5512), (6409, 6625, 8484), and (8619, 10136, 11275) (Guy 1994, p. 190; Buchholz 1992).
REFERENCES:
Buchholz, R. H. "Perfect Pyramids." Bull. Austral. Math. Soc. 45, 353-368, 1992.
Guy, R. K. "Simplexes with Rational Contents." §D22 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 190-192, 1994.
Peterson, I. "MathTrek: Euler Bricks and Perfect Polyhedra." Oct. 23, 1999. https://www.sciencenews.org/sn_arc99/10_23_99/mathland.htm.
Peterson, I. "MathTrek: Perfect Pyramids." July 26, 2003. https://www.sciencenews.org/20030726/mathtrek.asp.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
