تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Hofstadter-Conway $10,000 Sequence
المؤلف:
Bloom, D. M.
المصدر:
"Newman-Conway Sequence." Solution to Problem 1459. Math. Mag. 68
الجزء والصفحة:
...
28-10-2020
1676
Hofstadter-Conway $10,000 Sequence
The recursive sequence defined by the recurrence relation
![]() |
(1) |
with . The first few values are 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, ... (OEIS A004001; Wolfram 2002, pp. 129-130, sequence (c)). Conway (1988) showed that
and offered a prize of
to the discoverer of a value of
for which
for
. The prize was subsequently claimed by Mallows, after adjustment to Conway's "intended" prize of
(Schroeder 1991), who found
.
The plots above show (left plot) and
(right plot). Amazingly,
reveals itself to consist of a series of increasingly larger versions of the batrachion Blancmange function.
takes a value of 1/2 for
of the form
with
, 2, .... More generally,
![]() |
(2) |
and
![]() |
(3) |
Pickover (1995) gives a table of analogous values of corresponding to different values of
.
A related chaotic sequence is given by the recurrence equation
![]() |
(4) |
with , which gives the sequence 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, ... (OEIS A055748; Pinn 2000; Wolfram 2002, pp. 129-130, sequence (g)).
REFERENCES:
Bloom, D. M. "Newman-Conway Sequence." Solution to Problem 1459. Math. Mag. 68, 400-401, 1995.
Conolly, B. W. "Meta-Fibonacci Sequences." In Fibonacci and Lucas Numbers, and the Golden Section (Ed. S. Vajda). New York: Halstead Press, pp. 127-138, 1989.
Conway, J. "Some Crazy Sequences." Lecture at AT&T Bell Labs, July 15, 1988.
Guy, R. K. "Three Sequences of Hofstadter." §E31 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 231-232, 1994.
Kubo, T. and Vakil, R. "On Conway's Recursive Sequence." Disc. Math. 152, 225-252, 1996.
Mallows, C. L. "Conway's Challenge Sequence." Amer. Math. Monthly 98, 5-20, 1991.
Pickover, C. A. "The Drums of Ulupu." In Mazes for the Mind: Computers and the Unexpected. New York: St. Martin's Press, 1993.
Pickover, C. A. "The Crying of Fractal Batrachion ." Ch. 25 in Keys to Infinity. New York: W. H. Freeman, pp. 183-191, 1995.
Pickover, C. A. "The Crying of Fractal Batrachion ." Comput. & Graphics 19, 611-615, 1995. Reprinted in Chaos and Fractals, A Computer Graphical Journey: Ten Year Compilation of Advanced Research (Ed. C. A. Pickover). Amsterdam, Netherlands: Elsevier, pp. 127-131, 1998.
Pinn, K. "A Chaotic Cousin of Conway's Recursive Sequence." Exp. Math. 9, 55-66, 2000.
Schroeder, M. "John Horton Conway's 'Death Bet.' " Fractals, Chaos, Power Laws. New York: W. H. Freeman, pp. 57-59, 1991.
Sloane, N. J. A. Sequences A004001/M0276 and A055748 in "The On-Line Encyclopedia of Integer Sequences."
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 129-130, 2002.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
