Strong Lucas Pseudoprime
المؤلف:
Arnault, F.
المصدر:
"The Rabin-Monier Theorem for Lucas Pseudoprimes." Math. Comput. 66
الجزء والصفحة:
...
25-1-2021
1237
Strong Lucas Pseudoprime
Let
and
be Lucas sequences generated by
and
, and define
 |
(1)
|
Let
be an odd composite number with
, and
with
odd and
, where
is the Legendre symbol. If
 |
(2)
|
or
 |
(3)
|
for some
with
, then
is called a strong Lucas pseudoprime with parameters
.
A strong Lucas pseudoprime is a Lucas pseudoprime to the same base. Arnault (1997) showed that any composite number
is a strong Lucas pseudoprime for at most 4/15 of possible bases (unless
is the product of twin primes having certain properties).
REFERENCES:
Arnault, F. "The Rabin-Monier Theorem for Lucas Pseudoprimes." Math. Comput. 66, 869-881, 1997.
Ribenboim, P. "Euler-Lucas Pseudoprimes (elpsp(
)) and Strong Lucas Pseudoprimes (slpsp(
))." §2.X.C in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 130-131, 1996.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة