Read More
Date: 27-6-2021
![]()
Date: 9-6-2021
![]()
Date: 5-5-2021
![]() |
The rank of a vector bundle is the dimension of its fiber. Equivalently, it is the maximum number of linearly independent local bundle sections in a trivialization. Naturally, the dimension here is measured in the appropriate category. For instance, a real line bundle has fibers isomorphic with , and a complex line bundle has fibers isomorphic to
, but in both cases their rank is 1.
The rank of the tangent bundle of a real manifold is equal to the dimension of
. The rank of a trivial bundle
is equal to
. There is no upper bound to the rank of a vector bundle over a fixed manifold
.
|
|
دون أهمية غذائية.. هذا ما تفعله المشروبات السكرية بالصحة
|
|
|
|
|
المنظمة العربية للطاقة تحذر من خطر.. وهذه الدولة تتميز بجودة نفطها
|
|
|
|
|
وفد أكاديمي يشيد بجهود مؤسسة الوافي في مجال التوثيق وحفظ التراث
|
|
|