تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Edge-Graceful Graph
المؤلف:
Gallian, J.
المصدر:
"Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018. https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.
الجزء والصفحة:
...
6-5-2022
1571
Edge-Graceful Graph
A -graph is edge-graceful if the edges can be labeled 1 through
in such a way that the labels induced on the vertices by summing over incident edges modulo
are distinct. Lo (1985) showed that a graph
is edge-graceful only if
. Since then, many families of graphs have been shown to be edge-graceful. These are exhaustively enumerated in Gallian's dynamic survey, which also contains a complete bibliography of the subject.
In 1964, Ringel and Kotzig conjectured that every tree of odd order is edge-graceful. No known connected graph which satisfies Lo's condition has failed to be edge-graceful. The simplest known graph which satisfies the condition and yet fails to be edge-graceful is the disjoint union of with
(Lee et al. 1992). A later proof by Riskin and Wilson (1998) constructs infinite families of disjoint unions of cycles which satisfy Lo's condition and yet fail to be edge-graceful.
REFERENCES
Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018. https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.
Lee, S. M., Lo, S. P., and Seah, E. "On Edge-Gracefulness of 2-Regular Graphs." J. Combin. Math. Combin. Comput. 12, 109-117, 1992.
Lo, S. P. "On Edge Graceful Labelings of Graphs." Congr. Numer. 50, 231-241, 1985.
Riskin, A. and Wilson, S. "Edge Graceful Labelings of Disjoint Unions of Cycles." Bull. I.C.A. 22, 53-58, 1998.
Sheng-Ping, L. "One Edge-Graceful Labeling of Graphs." Congr. Numer. 50, 31-241, 1985.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
