Read More
Date: 25-7-2016
![]()
Date: 25-8-2016
![]()
Date: 28-7-2016
![]() |
Spherical Box with Hole
A particle is confined to a spherical box of radius R. There is a barrier in the center of the box, which excludes the particle from a radius a. So the particle is confined to the region a < r < R. Assume that the wave function vanishes at both r = a and r = R and derive an expression for the eigenvalues and eigenfunctions of states with angular momentum ℓ = 0.
SOLUTION
In spherical coordinates the eigenfunctions for noninteracting particles of wave vector k are of the form
(1)
where jℓ and ηℓ are spherical Bessel functions. The constants A and B are determined by the boundary conditions. Since we were only asked for the states with ℓ = 0, we only need j0(z) = sin z/z and η0(z) = -cos z/z. We can take a linear combination of these functions, which is a particular choice of the ratio B/A, to make the wave function vanish at r = a.
(2)
This satisfies the boundary condition at r = a. Requiring that this function vanish at r = R gives k(R – a) = nπ, so
(3)
(4)
|
|
دراسة: حفنة من الجوز يوميا تحميك من سرطان القولون
|
|
|
|
|
تنشيط أول مفاعل ملح منصهر يستعمل الثوريوم في العالم.. سباق "الأرنب والسلحفاة"
|
|
|
|
|
الطلبة المشاركون: مسابقة فنِّ الخطابة تمثل فرصة للتنافس الإبداعي وتنمية المهارات
|
|
|