Read More
Date: 15-3-2021
![]()
Date: 2-8-2016
![]()
Date: 11-8-2016
![]() |
Time-Dependent Harmonic Oscillator I
Consider a simple harmonic oscillator in one dimension:
(i)
At t = 0 the wave function is
(ii)
where ψn (x) is the exact eigenstate of the harmonic oscillator with eigenvalue hω(n+1/2).
a) Give Ψ(x, t) for t ≥ 0.
b) What is the parity of this state? Does it change with time?
c) What is the average value of the energy for this state? Does it change with time?
SOLUTION
a) At times t ≥ 0 the wave function is
(1)
b) The state Ψ(x, t) has even parity: it remains the same if one replaces x by –x, since ѱ2n(-x) = ѱ2n(x). This is true for all times.
c) The average value of the energy is
(2)
which is independent of time.
|
|
حقن الذهب في العين.. تقنية جديدة للحفاظ على البصر ؟!
|
|
|
|
|
"عراب الذكاء الاصطناعي" يثير القلق برؤيته حول سيطرة التكنولوجيا على البشرية ؟
|
|
|
|
|
المجمع العلمي يعقد اجتماعاً لمناقشة إطلاق مشروع الدورات القرآنيّة الصيفيّة
|
|
|